一种基于多任务网络的调制信号分类与带宽估计方法

    公开(公告)号:CN114548146A

    公开(公告)日:2022-05-27

    申请号:CN202210020325.0

    申请日:2022-01-10

    Abstract: 本发明公开了一种基于多任务网络的调制信号分类与带宽估计方法,包括如下步骤:S1、生成12种不同类型调制信号作为数据集;S2、对调制信号数据集样本进行低通滤波;S3、对调制信号数据集样本作零均值归一化预处理;S4、设计多任务神经网络的结构、参数和损失函数;S5、将预处理后的调制信号训练集输入多任务神经网络进行训练,并保存最优模型;S6、利用保存的最优模型识别调制信号的类别和宽带信息。本发明实现了多任务共享特征,调制类型识别和带宽估计共享前面网络层输出的特征,一次推理可以同时得到输入信号样本的调制类型和带宽,相对于分别进行类型识别和带宽估计可以减小参数量和计算量,保证较好的实时性。

    基于迁移学习的工作模式开集的雷达辐射源个体识别方法

    公开(公告)号:CN112308008A

    公开(公告)日:2021-02-02

    申请号:CN202011258729.0

    申请日:2020-11-12

    Abstract: 本发明公开了一种基于迁移学习的工作模式开集的雷达辐射源个体识别方法,包括如下步骤:S1、采集不同雷达在不同模式下发射的中频AD信号数据;S2、对样本进行归一化并划分成原始训练样本集、原始验证样本集;S3、生成测试样本集;S4、分别得到训练样本集和验证样本集;S5、构建基于迁移学习的工作模式开集的雷达辐射源个体识别模型;S6、训练深度神经网络模型;S7、用测试样本集获得雷达辐射源个体模型识别结果并统计识别准确率。利用迁移学习的方法强调将雷达的不同工作模式混淆在一起,从而使得辐射源个体的识别不会受到工作模式的影响,在雷达辐射源识别中能够达到较高的识别准确率。

    一种基于多任务网络的调制信号分类与带宽估计方法

    公开(公告)号:CN114548146B

    公开(公告)日:2023-04-28

    申请号:CN202210020325.0

    申请日:2022-01-10

    Abstract: 本发明公开了一种基于多任务网络的调制信号分类与带宽估计方法,包括如下步骤:S1、生成12种不同类型调制信号作为数据集;S2、对调制信号数据集样本进行低通滤波;S3、对调制信号数据集样本作零均值归一化预处理;S4、设计多任务神经网络的结构、参数和损失函数;S5、将预处理后的调制信号训练集输入多任务神经网络进行训练,并保存最优模型;S6、利用保存的最优模型识别调制信号的类别和宽带信息。本发明实现了多任务共享特征,调制类型识别和带宽估计共享前面网络层输出的特征,一次推理可以同时得到输入信号样本的调制类型和带宽,相对于分别进行类型识别和带宽估计可以减小参数量和计算量,保证较好的实时性。

    基于迁移学习的工作模式开集的雷达辐射源个体识别方法

    公开(公告)号:CN112308008B

    公开(公告)日:2022-05-17

    申请号:CN202011258729.0

    申请日:2020-11-12

    Abstract: 本发明公开了一种基于迁移学习的工作模式开集的雷达辐射源个体识别方法,包括如下步骤:S1、采集不同雷达在不同模式下发射的中频AD信号数据;S2、对样本进行归一化并划分成原始训练样本集、原始验证样本集;S3、生成测试样本集;S4、分别得到训练样本集和验证样本集;S5、构建基于迁移学习的工作模式开集的雷达辐射源个体识别模型;S6、训练深度神经网络模型;S7、用测试样本集获得雷达辐射源个体模型识别结果并统计识别准确率。利用迁移学习的方法强调将雷达的不同工作模式混淆在一起,从而使得辐射源个体的识别不会受到工作模式的影响,在雷达辐射源识别中能够达到较高的识别准确率。

    基于深度学习模型与特征联合的雷达辐射源个体识别方法

    公开(公告)号:CN111913156A

    公开(公告)日:2020-11-10

    申请号:CN202010778765.3

    申请日:2020-08-05

    Abstract: 一种基于深度学习模型与特征联合的雷达辐射源个体识别方法,其步骤为:1)采集不同雷达发射的中频AD信号数据,截取脉内信号数据生成雷达辐射源个体识别样本集;2)对雷达辐射源个体识别样本进行归一化处理并划分成训练样本集、验证样本集与测试样本集;3)构建基于深度学习模型与特征联合的雷达辐射源个体识别模型;4)训练基于深度学习模型与特征联合的雷达辐射源个体识别模型;5)用测试样本集获得雷达辐射源个体识别模型结果与特征判定结果;6)用雷达辐射源个体识别模型结果与特征判定结果联合计算最终识别结果并统计识别准确率。本发明具有普适性强,不需要人工特征提取和大量先验知识,具有复杂度低,分类结果准确稳定的优点。

    基于深度学习模型与特征联合的雷达辐射源个体识别方法

    公开(公告)号:CN111913156B

    公开(公告)日:2022-06-24

    申请号:CN202010778765.3

    申请日:2020-08-05

    Abstract: 一种基于深度学习模型与特征联合的雷达辐射源个体识别方法,其步骤为:1)采集不同雷达发射的中频AD信号数据,截取脉内信号数据生成雷达辐射源个体识别样本集;2)对雷达辐射源个体识别样本进行归一化处理并划分成训练样本集、验证样本集与测试样本集;3)构建基于深度学习模型与特征联合的雷达辐射源个体识别模型;4)训练基于深度学习模型与特征联合的雷达辐射源个体识别模型;5)用测试样本集获得雷达辐射源个体识别模型结果与特征判定结果;6)用雷达辐射源个体识别模型结果与特征判定结果联合计算最终识别结果并统计识别准确率。本发明具有普适性强,不需要人工特征提取和大量先验知识,具有复杂度低,分类结果准确稳定的优点。

Patent Agency Ranking