-
公开(公告)号:CN119640196A
公开(公告)日:2025-03-18
申请号:CN202411821486.5
申请日:2024-12-11
Applicant: 燕山大学
Abstract: 本发明涉及一种钛合金超高温耐磨陶瓷涂层的等离子热喷涂‑热轧原位成形系统及方法,包括加热单元、等离子热喷涂单元和热轧单元;钛合金经电磁感应加热后,输送至等离子热喷涂单元;高熔点陶瓷复合粉体经等离子体高温熔融后喷涂到高温钛合金上,形成一层陶瓷熔融层,随后与钛合金一同输送至热轧单元,进行原位成膜‑成形‑成性轧制。采用本发明的等离子热喷涂‑热轧复合系统,借助等离子体的高温效能、轧辊的高应力成形优势及高温钛合金的预热及保温特性,可有效促进陶瓷涂层与钛合金之间冶金层的生成,抑制涂层内部的气孔,降低涂层内部的热应力裂纹,进而获得高硬度高界面结合性能的超高温陶瓷涂层,最终改善钛合金的超高温极端环境耐磨性能。
-
公开(公告)号:CN117551424A
公开(公告)日:2024-02-13
申请号:CN202311501800.7
申请日:2023-11-10
Applicant: 燕山大学
Abstract: 本发明公开了一种油基热敏活性研磨液及微波辅助固结磨料研磨方法,油基热敏活性研磨液,包括以下组分:丙二醇的质量百分数为0.5%~5%,三乙醇胺的质量百分数为0.5%~5%,热敏氧化剂的质量百分数为1%~10%,余量为植物油。微波诱导热敏活性研磨液中热分解型引发剂分解产生强化学活性的自由基,快速对机械力作用下的硬脆材料进行化学改性,促进基体表面产生一层相对更软的改性层;微波加热作用下,热敏活性研磨液作为传导介质将热量传递到待加工工件表面,提高工件表层改性层材料的塑性变形能力;金刚石固结磨料磨盘机械去除被微波加热软化的工件表层材料,低硬度的改性层破碎、层状剥落,快速暴露的新生面被进一步改性和去除,获得高的加工效率。
-
公开(公告)号:CN118268871B
公开(公告)日:2024-11-01
申请号:CN202410447047.6
申请日:2024-04-15
Applicant: 燕山大学
IPC: B23P23/00
Abstract: 本发明涉及一种激光‑紫外光‑微波多能场耦合超精密加工系统及方法,包括数控机床,数控机床的动力系统与高速气浮主轴连接,所述高速气浮主轴与回转工作台连接,回转工作台连接有工件装夹件,数控机床的床身上设置有移动机构,移动机构可拆卸地连接有加工单元,所述加工单元有激光加工单元、紫外光加工单元、微波加工单元、车削加工单元和磨削加工单元,可复合成激光‑紫外光‑磨削加工系统及激光‑微波‑车削加工系统,采用本发明的多能场耦合加工系统可同时实现硬脆光电材料和软脆光电材料复杂形面和微结构的经济、高效、近无损伤超精密加工。
-
公开(公告)号:CN119820471A
公开(公告)日:2025-04-15
申请号:CN202510155872.3
申请日:2025-02-12
Applicant: 燕山大学
IPC: B24B37/04 , B24B37/10 , B24B37/005 , B24B37/34 , B24B37/30 , B24B37/14 , B24B55/02 , H01L21/02 , H01L21/67 , C10M169/04 , C10N30/06 , C10N30/10
Abstract: 本发明涉及一种硬脆半导体晶圆的化学机械磨削系统及方法,所述化学机械磨削方法:采用有机热分解型氧化剂和有机光分解氧化剂及聚乙二醇、丙三醇和植物油,配置油基热活性‑光活性复合磨削液;搭建具有紫外光辐照功能且辐照强度和紫外光波长可调可控的紫外光‑金刚石磨料砂轮化学机械磨削平台;启动化学机械磨削平台及微量润滑供液装置,控制待加工晶圆与金刚石磨料砂轮相互旋转对磨;开启紫外光发生器对晶圆表面热活性‑光活性复合磨削液滴进行精准辐照,利用磨削热能和紫外光辐照能诱导热分解型和光分解型氧化剂产生活性自由基,引发晶圆表层材料发生自由基氧化反应,形成低界面结合力的氧化层;金刚石磨料小载荷微切削去除晶圆表面氧化层,高效率获得亚表面近无机械损伤的半导体晶圆。
-
公开(公告)号:CN118905775A
公开(公告)日:2024-11-08
申请号:CN202411153293.7
申请日:2024-08-21
Applicant: 燕山大学
Abstract: 本发明涉及一种硬脆半导体晶圆的微波背减加工系统与方法,包括高精度数控背减磨床与微波辐照单元,数控背减磨床搭载有两个高精度气浮主轴,所述的两个高速气浮主轴分别通过砂轮装夹件和工件装夹件与背减砂轮和工作台相连,实现砂轮的自旋转运动及待加工半导体晶圆的跟随旋转运动,数控背减磨床床身上搭载有一个高精度直线电机,所述直线电机与连接砂轮的高速气浮主轴相连,实现高精度进给;所述微波辐照单元可与背减砂轮加工单元复合成微波‑磨削旁轴背减加工系统及微波‑磨削同轴背减加工系统,采用本发明的微波背减加工系统可实现硬脆半导体晶圆的高效率、超精密“低温”塑性域磨削加工。
-
公开(公告)号:CN118218397A
公开(公告)日:2024-06-21
申请号:CN202410336172.X
申请日:2024-03-22
Applicant: 燕山大学
Abstract: 本发明涉及一种钢板表面耐蚀耐磨陶瓷层原位成膜的热轧系统及方法,包括热轧单元和涂布单元,热轧机上或下轧辊与涂布单元连接,涂布单元包括卷对卷输送系统、烘干单元、涂布刮刀系统、供料单元和加热单元。陶瓷浆料通过供料单元和涂布刮刀系统被均匀平整地涂覆到无纺布上,随后经烘干单元和加热单元的预热作用,粘贴于热轧机的上或下轧辊表面,经卷对卷输送系统实现连续输送,最后作用于轧辊和钢板接触界面,含陶瓷复合粉体的无纺布经高温高压作用发生碳化及元素扩散,实现界面冶金结合,形成一层致密陶瓷层。采用本发明的热轧系统,可实现钢板表面原位陶瓷化成膜,增强钢板的耐蚀和耐磨性能,改善陶瓷涂层制备成本、效率和涂层性能之间突出矛盾。
-
公开(公告)号:CN116038551A
公开(公告)日:2023-05-02
申请号:CN202310037046.X
申请日:2023-01-10
Applicant: 燕山大学
Abstract: 本发明提供一种光化学机械研磨方法及光敏活性研磨液,研磨的步骤为:搭建具备紫外光全波段覆盖而强度能调整且避光的光化学机械研磨平台;启动光化学机械研磨平台对金刚石固结磨料研磨盘进行对磨;调整紫外光LED灯得到合适波长和强度的紫外光,利用紫外光辐照能量诱导光敏研磨液中光引发剂复配物裂解产生苯甲酰和烷基自由基,引发工件表面材料形成硬度低、弹性模量小和断裂韧性高的改性层,对磨改性层得到研磨后的工件。配置光敏活性研磨液,其包括光引发剂复配物、丙二醇、甘油和去离子水。本发明利用光敏研磨液对机械力作用下的工件进行紫外光可控化学改性,减小甚至消除机械应力去除造成的加工损伤,从而实现难加工材料高质量高效率超精密加工。
-
公开(公告)号:CN119465133A
公开(公告)日:2025-02-18
申请号:CN202411410655.6
申请日:2024-10-10
Applicant: 燕山大学
Abstract: 本发明涉及一种金属板材强耐磨陶瓷涂层的激光‑热轧复合原位成膜系统及方法,包括加热单元、喷粉单元、激光熔覆单元和热轧单元;金属板材经加热炉加热后,输送至喷粉单元;陶瓷复合粉体通过喷粉单元被均匀平整地覆盖到高温金属板材上,随后与板材一同输送至激光熔覆单元;陶瓷复合粉体经激光作用后形成一层熔融层,最后与板材一同输送至热轧单元,进行原位成膜成形成性轧制。采用本发明的激光‑热轧复合系统,借助高温金属板材的预热作用和激光的熔融作用,可加速陶瓷复合粉体与金属元素的高温冶金反应,原位形成陶瓷层,同时利用轧辊的高应力成形特点,获得均匀、致密、无孔洞且无裂纹的高耐磨陶瓷涂层,最终增强金属板材的耐磨性能。
-
公开(公告)号:CN118268871A
公开(公告)日:2024-07-02
申请号:CN202410447047.6
申请日:2024-04-15
Applicant: 燕山大学
IPC: B23P23/00
Abstract: 本发明涉及一种激光‑紫外光‑微波多能场耦合超精密加工系统及方法,包括数控机床,数控机床的动力系统与高速气浮主轴连接,所述高速气浮主轴与回转工作台连接,回转工作台连接有工件装夹件,数控机床的床身上设置有移动机构,移动机构可拆卸地连接有加工单元,所述加工单元有激光加工单元、紫外光加工单元、微波加工单元、车削加工单元和磨削加工单元,可复合成激光‑紫外光‑磨削加工系统及激光‑微波‑车削加工系统,采用本发明的多能场耦合加工系统可同时实现硬脆光电材料和软脆光电材料复杂形面和微结构的经济、高效、近无损伤超精密加工。
-
公开(公告)号:CN116038551B
公开(公告)日:2023-12-29
申请号:CN202310037046.X
申请日:2023-01-10
Applicant: 燕山大学
Abstract: 本发明提供一种光化学机械研磨方法及光敏活性研磨液,研磨的步骤为:搭建具备紫外光全波段覆盖而强度能调整且避光的光化学机械研磨平台;启动光化学机械研磨平台对金刚石固结磨料研磨盘进行对磨;调整紫外光LED灯得到合适波长和强度的紫外光,利用紫外光辐照能量诱导光敏研磨液中光引发剂复配物裂解产生苯甲酰和烷基自由基,引发工件表面材料形成硬度低、弹性模量小和断裂韧性高的改性层,对磨改性层得到研磨后的工件。配置光敏活性研磨液,其包括光引发剂复配物、丙二醇、甘油和去离子水。本发明利用光敏研磨液对机械力作用下的工件进行紫外光可控化学改性,减小甚至消除机械应力去除造成的加工损伤,从而实现难加工材料高质量高效率超精密加工。
-
-
-
-
-
-
-
-
-