-
公开(公告)号:CN117611223A
公开(公告)日:2024-02-27
申请号:CN202311648875.8
申请日:2023-12-05
Applicant: 湖南大学深圳研究院
IPC: G06Q30/0201 , G06Q30/0202 , G06N3/048 , G06N3/08
Abstract: 本申请公开了一种用于碳交易的车辆油耗数据预测方法及系统,属于智能交通和机器学习技术领域。该方法基于车辆真实驾驶数据预测油耗,首先将收集的数据分为微观和介观两个层面,其次对其进行预处理,然后构建了一个具有两层隐藏层的人工神经网络框架,分别将预处理后的数据采用人工神经网络进行预测,最后将输出值进行综合;碳排放估算模块首先通过综合燃料类型、车辆效率确定碳排放因子,其次结合预测模块输出的油耗数据进行区域车辆碳排放估算,最后用于辅助碳交易价格的预测。本申请在数据预处理前采用了分层处理,并优化了人工神经网络框架的隐藏层、神经元和算法的数量,提高了车辆油耗数据和碳交易价格的预测精度。
-
公开(公告)号:CN116052427B
公开(公告)日:2024-05-31
申请号:CN202310053817.4
申请日:2023-02-03
Applicant: 湖南大学深圳研究院
Abstract: 本发明公开了一种基于私家车出行轨迹数据的城市间跨区域移动性预测方法及装置,方法包括:获取城市群跨区域出行的私家车轨迹数据和驾驶状态数据,提取历史出行流量数据、时空地理数据和POI数据;基于城市群区域划分,根据提取数据构建城市群的空间邻接矩阵S、语义邻接矩阵W和建模三维图信号张量χ;采用基于时空图常微分方程网络的预测模型,根据城市群的S和W及χ预测城市群未来出行流量;基于交通流理论,从历史出行流量数据中获取出行流量初始状态,再采用基于神经常微分方程网络的预测模型,根据初始状态预测未来出行流量;最终融合两个预测模型的出行流量预测结果,保证了城市间出行流量预测结果的准确性和有效性。
-
公开(公告)号:CN116052427A
公开(公告)日:2023-05-02
申请号:CN202310053817.4
申请日:2023-02-03
Applicant: 湖南大学深圳研究院
Abstract: 本发明公开了一种基于私家车出行轨迹数据的城市间跨区域移动性预测方法及装置,方法包括:获取城市群跨区域出行的私家车轨迹数据和驾驶状态数据,提取历史出行流量数据、时空地理数据和POI数据;基于城市群区域划分,根据提取数据构建城市群的空间邻接矩阵S、语义邻接矩阵W和建模三维图信号张量χ;采用基于时空图常微分方程网络的预测模型,根据城市群的S和W及χ预测城市群未来出行流量;基于交通流理论,从历史出行流量数据中获取出行流量初始状态,再采用基于神经常微分方程网络的预测模型,根据初始状态预测未来出行流量;最终融合两个预测模型的出行流量预测结果,保证了城市间出行流量预测结果的准确性和有效性。
-
-