-
公开(公告)号:CN116052427B
公开(公告)日:2024-05-31
申请号:CN202310053817.4
申请日:2023-02-03
Applicant: 湖南大学深圳研究院
Abstract: 本发明公开了一种基于私家车出行轨迹数据的城市间跨区域移动性预测方法及装置,方法包括:获取城市群跨区域出行的私家车轨迹数据和驾驶状态数据,提取历史出行流量数据、时空地理数据和POI数据;基于城市群区域划分,根据提取数据构建城市群的空间邻接矩阵S、语义邻接矩阵W和建模三维图信号张量χ;采用基于时空图常微分方程网络的预测模型,根据城市群的S和W及χ预测城市群未来出行流量;基于交通流理论,从历史出行流量数据中获取出行流量初始状态,再采用基于神经常微分方程网络的预测模型,根据初始状态预测未来出行流量;最终融合两个预测模型的出行流量预测结果,保证了城市间出行流量预测结果的准确性和有效性。
-
公开(公告)号:CN115985102A
公开(公告)日:2023-04-18
申请号:CN202310114056.9
申请日:2023-02-15
Applicant: 湖南大学深圳研究院
IPC: G08G1/01
Abstract: 本发明公开了一种基于迁移对比学习的城市交通流量预测方法和设备,方法包括预测模块、源数据对比学习模块和目标数据对比学习模块;预测模块基于源城市数据和目标城市数据进行迁移学习,即首先利用编码器捕获输入数据特征,然后采用三维卷积层和MMD来进行迁移学习,最后通过注意力机制同时引入外部因素进行预测;两个对比学习模块基于增强处理前数据相对于增强处理后的正对和负对数据的相关性,尽可能提高与正对数据的相似性,减少与负对数据的相似性,实现采用对比学习自监督地学习目标数据和源数据的特征来辅助预测目标城市交通流量。本发明综合迁移学习和对比学习的优点,提高交通流量综合预测模型的泛化能力,进一步提高预测精度。
-
公开(公告)号:CN116052427A
公开(公告)日:2023-05-02
申请号:CN202310053817.4
申请日:2023-02-03
Applicant: 湖南大学深圳研究院
Abstract: 本发明公开了一种基于私家车出行轨迹数据的城市间跨区域移动性预测方法及装置,方法包括:获取城市群跨区域出行的私家车轨迹数据和驾驶状态数据,提取历史出行流量数据、时空地理数据和POI数据;基于城市群区域划分,根据提取数据构建城市群的空间邻接矩阵S、语义邻接矩阵W和建模三维图信号张量χ;采用基于时空图常微分方程网络的预测模型,根据城市群的S和W及χ预测城市群未来出行流量;基于交通流理论,从历史出行流量数据中获取出行流量初始状态,再采用基于神经常微分方程网络的预测模型,根据初始状态预测未来出行流量;最终融合两个预测模型的出行流量预测结果,保证了城市间出行流量预测结果的准确性和有效性。
-
公开(公告)号:CN115985102B
公开(公告)日:2024-06-18
申请号:CN202310114056.9
申请日:2023-02-15
Applicant: 湖南大学深圳研究院
IPC: G08G1/01
Abstract: 本发明公开了一种基于迁移对比学习的城市交通流量预测方法和设备,方法包括预测模块、源数据对比学习模块和目标数据对比学习模块;预测模块基于源城市数据和目标城市数据进行迁移学习,即首先利用编码器捕获输入数据特征,然后采用三维卷积层和MMD来进行迁移学习,最后通过注意力机制同时引入外部因素进行预测;两个对比学习模块基于增强处理前数据相对于增强处理后的正对和负对数据的相关性,尽可能提高与正对数据的相似性,减少与负对数据的相似性,实现采用对比学习自监督地学习目标数据和源数据的特征来辅助预测目标城市交通流量。本发明综合迁移学习和对比学习的优点,提高交通流量综合预测模型的泛化能力,进一步提高预测精度。
-
-
-