-
公开(公告)号:CN115985102B
公开(公告)日:2024-06-18
申请号:CN202310114056.9
申请日:2023-02-15
Applicant: 湖南大学深圳研究院
IPC: G08G1/01
Abstract: 本发明公开了一种基于迁移对比学习的城市交通流量预测方法和设备,方法包括预测模块、源数据对比学习模块和目标数据对比学习模块;预测模块基于源城市数据和目标城市数据进行迁移学习,即首先利用编码器捕获输入数据特征,然后采用三维卷积层和MMD来进行迁移学习,最后通过注意力机制同时引入外部因素进行预测;两个对比学习模块基于增强处理前数据相对于增强处理后的正对和负对数据的相关性,尽可能提高与正对数据的相似性,减少与负对数据的相似性,实现采用对比学习自监督地学习目标数据和源数据的特征来辅助预测目标城市交通流量。本发明综合迁移学习和对比学习的优点,提高交通流量综合预测模型的泛化能力,进一步提高预测精度。
-
公开(公告)号:CN116403404A
公开(公告)日:2023-07-07
申请号:CN202310424595.2
申请日:2023-04-20
Applicant: 湖南大学深圳研究院
IPC: G08G1/01 , G06F18/25 , G06F18/213
Abstract: 本发明公开了基于运动不确定性扩散模型的车辆轨迹预测方法及系统,方法包括:获取训练车辆的真实轨迹;对真实轨迹中的过去真实轨迹进行时空特征编码处理,得到真实轨迹特征;基于运动不确定性扩散原理、真实轨迹及真实轨迹特征进行高斯噪声融合处理,训练得到去高斯噪声算法;根据去高斯噪声算法构建得到运动不确定性扩散模型;当需要对待预测车辆进行轨迹预测时,获取待预测车辆的已知轨迹特征;基于运动不确定性扩散模型对已知轨迹特征进行处理,得到预测轨迹。使得车辆轨迹预测的结果能够兼顾多样性和准确性。
-
公开(公告)号:CN115985102A
公开(公告)日:2023-04-18
申请号:CN202310114056.9
申请日:2023-02-15
Applicant: 湖南大学深圳研究院
IPC: G08G1/01
Abstract: 本发明公开了一种基于迁移对比学习的城市交通流量预测方法和设备,方法包括预测模块、源数据对比学习模块和目标数据对比学习模块;预测模块基于源城市数据和目标城市数据进行迁移学习,即首先利用编码器捕获输入数据特征,然后采用三维卷积层和MMD来进行迁移学习,最后通过注意力机制同时引入外部因素进行预测;两个对比学习模块基于增强处理前数据相对于增强处理后的正对和负对数据的相关性,尽可能提高与正对数据的相似性,减少与负对数据的相似性,实现采用对比学习自监督地学习目标数据和源数据的特征来辅助预测目标城市交通流量。本发明综合迁移学习和对比学习的优点,提高交通流量综合预测模型的泛化能力,进一步提高预测精度。
-
-