-
公开(公告)号:CN114636754A
公开(公告)日:2022-06-17
申请号:CN202210226787.8
申请日:2022-03-09
Applicant: 清华大学
IPC: G01N27/83
Abstract: 本发明公开了一种基于漏磁空间积分的裂纹缺陷量化方法和装置,该方法包括:将不同提离值下裂纹缺陷漏磁信号转换为模拟电压信号;结合里程采样触发信号,对不同提离值下裂纹缺陷漏磁模拟信号进行积分运算;以及对积分运算的输出进行采样,获取第一提离值下对应的第一漏磁信号积分值和第二提离值下对应的第二漏磁信号积分值;并构建迭代方程得到裂纹缺陷的半宽度量化数值解;根据漏磁场积分法得到裂纹缺陷的深度量化解析解;输出裂纹缺陷的量化尺寸结果。本发明能够确保不会发生裂纹漏磁信号漏采或者丢失有效漏磁信号的等常规漏磁检测系统直接采样泄漏磁场时可能出现的问题;并且理论模型清晰计算速度快计算结果准确,裂纹缺陷尺寸量化效率高。
-
公开(公告)号:CN111337566B
公开(公告)日:2021-10-22
申请号:CN202010114747.5
申请日:2020-02-25
Applicant: 清华大学
IPC: G01N27/83
Abstract: 本发明公开了一种漏磁检测缺陷边沿识别的方法,包括:获取不同提离值下的缺陷漏磁场切向分量;获取各组缺陷漏磁场信号的极大值以及对应的切向位置和提离值;对缺陷漏磁场信号的极大值及对应的提离值进行非线性拟合,获得缺陷漏磁场信号极大值与对应的提离值之间的关系,根据该关系推算出提离值为0时,试样表面处的漏磁场信号的极大值;对缺陷漏磁场信号的极大值及对应的切向位置进行非线性拟合,获得缺陷漏磁场信号极大值与对应的切向位置之间的关系,根据该关系以及试样表面处的漏磁场信号的极大值,得到试样表面处的漏磁场信号极大值所对应的切向位置,该位置为缺陷边沿所在位置。该方法可对每一个缺陷执行一次解算,解算出该缺陷的边沿位置。
-
公开(公告)号:CN111337566A
公开(公告)日:2020-06-26
申请号:CN202010114747.5
申请日:2020-02-25
Applicant: 清华大学
IPC: G01N27/83
Abstract: 本发明公开了一种漏磁检测缺陷边沿识别的方法,包括:获取不同提离值下的缺陷漏磁场切向分量;获取各组缺陷漏磁场信号的极大值以及对应的切向位置和提离值;对缺陷漏磁场信号的极大值及对应的提离值进行非线性拟合,获得缺陷漏磁场信号极大值与对应的提离值之间的关系,根据该关系推算出提离值为0时,试样表面处的漏磁场信号的极大值;对缺陷漏磁场信号的极大值及对应的切向位置进行非线性拟合,获得缺陷漏磁场信号极大值与对应的切向位置之间的关系,根据该关系以及试样表面处的漏磁场信号的极大值,得到试样表面处的漏磁场信号极大值所对应的切向位置,该位置为缺陷边沿所在位置。该方法可对每一个缺陷执行一次解算,解算出该缺陷的边沿位置。
-
公开(公告)号:CN111060587A
公开(公告)日:2020-04-24
申请号:CN201911285985.6
申请日:2019-12-13
Applicant: 清华大学
Abstract: 本发明公开了一种漏磁检测探头姿态补偿方法及装置,其中,方法包括:获取正常姿态下两个三轴磁场测量芯片的切向距离;利用两个三轴磁场测量芯片获取当前探头倾斜情况下的磁场值;将获得的磁场值中的两组切向分量进行滤波和微分处理,得到两组磁场测量信号的微分值;对微分值的特征分别进行标记得到特征微分值为常数的平坦数据段;将平坦数据段的中点分别记为缺陷中心,记录缺陷中心对应的第一、第二里程距离;根据第一、第二里程距离和两个测量芯片的切向距离计算当前探头姿态倾斜角;利用倾斜角对获得的磁场值进行补偿计算,得到探头正确姿态下的缺陷漏磁信号。该方法能在探头姿态倾斜的情况下,完成漏磁信号测量及倾斜姿态漏磁信号的实时补偿。
-
公开(公告)号:CN111044605A
公开(公告)日:2020-04-21
申请号:CN201911284632.4
申请日:2019-12-13
Applicant: 清华大学
Abstract: 本发明公开了一种漏磁检测提离补偿和缺陷深度解析的方法及装置,其中,该方法包括:获取两个三轴磁场测量芯片在法向方向上的高度差;获取两个三轴磁场测量芯片当前提离和高度差下的磁场值;对两个三轴磁场测量芯片的磁场值进行磁场转换变量,得到第一切向分量和第一法向分量,第二切向分量和第二法向分量;根据上述两个切向分量和两个法向分量计算得到第一深度提离复合变量和第二深度提离复合变量;利用两个深度提离复合变量,分别解算出当前两个三轴磁场测量芯片的提离值和当前的缺陷深度;利用缺陷深度对当前的磁场值进行补偿计算,得到目标提离值下的磁场值。该方法能在偏移和波动的提离值下解析缺陷深度,并实时补偿提离得到缺陷磁信号。
-
公开(公告)号:CN108828059B
公开(公告)日:2020-04-07
申请号:CN201810711896.2
申请日:2018-06-29
Applicant: 清华大学
Abstract: 本发明公开了一种电磁多场耦合缺陷综合检测评价方法及装置,其中,方法包括:对待测管道进行多场耦合磁化;对管道进行缺陷检测;对缺陷处的信号进行采集,以得到缺陷处的三维泄漏磁信号和阻抗电信号;对缺陷处的三维泄漏磁信号和阻抗电信号进行预处理;对预处理后的三维泄漏磁信号和阻抗电信号进行解耦分析,以得到解耦后的缺陷漏磁信号和涡流阻抗电信号;对解耦后的涡流阻抗电信号进行阻抗分析,并进行缺陷类型区分,以区分出腐蚀缺陷和裂纹缺陷;对解耦后的缺陷漏磁信号进行量化分析,并采用神经网络缺陷量化方法对缺陷的尺寸进行量化评价。该方法可以准确识别管道中的腐蚀和裂纹缺陷并进行尺寸量化,有效实现缺陷的综合检测评价。
-
公开(公告)号:CN107255671B
公开(公告)日:2019-10-29
申请号:CN201710516071.0
申请日:2017-06-29
Applicant: 清华大学
IPC: G01N27/90
Abstract: 本发明公开了一种钢板缺陷磁旋阵成像检测方法及检测装置,其中,方法包括:获取特性参数,并确定最佳激励频率;激发正弦交流磁场,并感应出交变的涡旋电流;采集被测钢板被检测区域附近的感应交变磁信号;对感应交变磁信号进行处理,并进行一阶差分变换操作,以得到变换后的差分信号;判断差分信号是否小于预设阈值,其中,如果是,则判定不存在缺陷,否则判定存在缺陷,则提取区域信号;将区域信号输入构建的神经网络模型进行缺陷逆向反演,以得到缺陷轮廓参数;根据缺陷轮廓参数绘制缺陷轮廓,实现成像。该方法可以采用同心环式磁旋阵检测阵列进行缺陷检测,从而实现钢板缺陷的高精度检测,提高检测的精确度,且提高缺陷成像效果。
-
公开(公告)号:CN112834606B
公开(公告)日:2022-11-29
申请号:CN202110018225.X
申请日:2021-01-07
Applicant: 清华大学 , 北京麦格迪管道科技有限公司
IPC: G01N27/83
Abstract: 本发明提出一种基于聚焦漏磁复合检测的内外壁缺陷识别的方法和装置,其中,装置包括:磁聚焦铁轭、极靴或钢刷、永磁体、铁轭;其中,磁聚焦铁轭处于偏心位置,并且与被测试样之间留有气隙,用于形成端部磁场聚焦效应;永磁体包括左右两个磁化方向相反的永磁体对称分布,位于极靴或钢刷上方,用于饱和磁化被测试试样;铁轭位于磁聚焦铁轭和永磁体上方,用于形成饱和磁化回路;极靴或钢刷位于两个磁化方向相反的永磁体下方对称分布。本发明能于同一机械环节同时实现漏磁检测与内外壁缺陷识别;结构更集中,可靠性更高,装置通过能力更强;方法求解模型简单,缺陷判别速度快,实时性好;系统功耗低。
-
公开(公告)号:CN111929356B
公开(公告)日:2022-08-16
申请号:CN202010646149.2
申请日:2020-07-07
Applicant: 清华大学 , 北京麦格迪管道科技有限公司
IPC: G01N27/82
Abstract: 本申请公开了一种钢材缺陷磁成像装置及方法,其中,装置包括:磁成像探头,磁成像探头用于获取被测物体表面无损处的第一磁通数据,并扫查被测物体的待检测区,得到第二磁通数据;数据处理模块,用于接收磁成像探头发送的第一磁通数据和第二磁通数据,根据第一磁通数据和第二磁通数据,计算得到变化磁通数据,从而根据变化磁通数据得到被测物体的三维轮廓图像;以及上位机,上位机用于为数据处理模块和磁成像探头供电,并显示三维轮廓图像。该装置结构简单、造价低、检测速度快,对缺陷危害的评估具有重要意义。
-
公开(公告)号:CN111929356A
公开(公告)日:2020-11-13
申请号:CN202010646149.2
申请日:2020-07-07
Applicant: 清华大学 , 北京麦格迪管道科技有限公司
IPC: G01N27/82
Abstract: 本申请公开了一种钢材缺陷磁成像装置及方法,其中,装置包括:磁成像探头,磁成像探头用于获取被测物体表面无损处的第一磁通数据,并扫查被测物体的待检测区,得到第二磁通数据;数据处理模块,用于接收磁成像探头发送的第一磁通数据和第二磁通数据,根据第一磁通数据和第二磁通数据,计算得到变化磁通数据,从而根据变化磁通数据得到被测物体的三维轮廓图像;以及上位机,上位机用于为数据处理模块和磁成像探头供电,并显示三维轮廓图像。该装置结构简单、造价低、检测速度快,对缺陷危害的评估具有重要意义。
-
-
-
-
-
-
-
-
-