基于多重填充及变分网络的不完全数据聚类方法及系统

    公开(公告)号:CN118585840A

    公开(公告)日:2024-09-03

    申请号:CN202410922820.X

    申请日:2024-07-10

    Applicant: 济南大学

    Abstract: 本发明属于数据挖掘技术领域,提供了基于多重填充及变分网络的不完全数据聚类方法及系统,包括获取待聚类的不完全数据集;对缺失数据进行多重推断,得到多个填充结果;将填充结果编码为潜在表示,融合潜在分布,得到共享潜在分布;从高斯混合模型中选择一个聚类,根据所选聚类产生共享潜在变量,利用高斯混合模型计算聚类分配概率;定义目标函数,计算前后两次迭代的目标函数值之间的差值,如果满足设定条件,则终止迭代,如果不满足则重复执行上述步骤。本发明解决了传统的不完全数据聚类方法填充与聚类部分分离、推断过程无法获得足够的信息来处理高维数据的问题。

    一种基于自适应密度峰值聚类的工业数据划分方法及系统

    公开(公告)号:CN116541734A

    公开(公告)日:2023-08-04

    申请号:CN202310502078.2

    申请日:2023-04-28

    Applicant: 济南大学

    Abstract: 本发明属于机器学习领域,提供了一种基于自适应密度峰值聚类的工业数据划分方法及系统,其方案为:基于工业设备用电数据和自适应密度峰值聚类算法进行聚类得到数据划分结果;其中,所述自适应密度峰值聚类算法的构建过程为:引入数据点的共享邻居调整数据点之间的距离度量值,计算数据点的局部域密度;结合数据点的局部域密度,引入密度衰减现象,通过密度衰减现象将数据点自适应地汇聚成微簇;采用两阶段分配策略代替一阶段分配策略,对数据进行划分,第一阶段,将微簇合并形成簇主干,第二阶段,用第一阶段已分配的簇主干指导第二步剩余数据点的分配。

    一种理财产品推荐方法、系统、存储介质及设备

    公开(公告)号:CN113656707A

    公开(公告)日:2021-11-16

    申请号:CN202111027573.X

    申请日:2021-09-02

    Applicant: 济南大学

    Abstract: 本发明属于理财产品推荐领域,提供了一种理财产品推荐方法、系统、存储介质及设备。其中,该方法包括获取理财用户数据;基于理财用户数据和训练完成的自编码神经网络模型,得到推荐理财产品类型;其中,自编码神经网络模型的训练过程为:采用理财用户数据预训练自编码神经网络模型;将理财用户数据及其若干个最近邻数据拼接构成训练数据;以预训练的自编码神经网络模型中的参数为初始值,利用训练数据继续训练自编码神经网络模型,直至到达最大迭代次数或者损失误差小于停止阈值。

    一种基于降维窗口的主成分分析方法及系统

    公开(公告)号:CN109241367A

    公开(公告)日:2019-01-18

    申请号:CN201810885037.5

    申请日:2018-08-06

    Applicant: 济南大学

    Abstract: 本发明提供一种基于降维窗口的主成分分析方法及系统,包括如下步骤:1.输入待处理数据集X;S2.初始化降维窗口参数e和结束条件参数a;3.根据输入数据集X计算得到初始相关系数矩阵B;4.根据初始相关系数矩阵B计算得到相关系数矩阵P;5.根据相关系数矩阵P判断是否符合结束条件;若是,进入步骤6;若否,进入步骤7;6.输出降维结果数据集X`;7.为相关系数矩阵P添加降维窗口,并将相关系数矩阵P每行元素按大小排列;8.判断是否出现窗口溢出,或者,出现窗口宽度优化后无变化;若是,进入步骤9;若否,进入步骤10;9.优化降维窗口参数;返回步骤7;10.在降维窗口内对数据进行降维处理;返回步骤3。

    一种生产参数优化预测方法、装置、设备及存储介质

    公开(公告)号:CN108647808A

    公开(公告)日:2018-10-12

    申请号:CN201810322649.3

    申请日:2018-04-11

    Applicant: 济南大学

    Abstract: 本发明涉及一种生产参数优化预测方法、装置、设备及存储介质,包括:获取生产流程中各个工序的监测数据;对所述监测数据预处理;利用规则关联算法在任意两个工序间构建表示两个工序间影响关系的最强关联链,并将所述最强关联链与所述监测数据波动状态结合,得到状态关联链;利用柔性神经树算法根据所述状态关联链建立预测模型,得到并输出预测结果。该方法可根据预测结果对关键工序的参数进行优化,通过优化关键工序的参数进而优化燃煤锅炉的生产流程,达到节能减排、提高经济性和生产安全性的效果。

    一种面向流式数据的并行增量式关联规则挖掘方法

    公开(公告)号:CN107229751A

    公开(公告)日:2017-10-03

    申请号:CN201710507953.0

    申请日:2017-06-28

    Applicant: 济南大学

    Abstract: 本发明涉及一种面向流式数据的并行增量式关联规则挖掘方法,对传统静态的关联规则挖掘方法进行了改进,提出了面向动态数据流的并行增量式关联规则提取方法,其基本步骤如下:1、在原事务数据库中,根据数据对象的时序划分层次,将整个事务数据库随机划分成若干个非重叠区域;2、利用并行计算平台挖掘出局部频繁项集,生成全局候选项集,进而计算得到全局频繁项集;3、对新增数据流进行增量挖掘,使用局部剪枝的方法,减少扫描数据集次数,得到增量式全局规则。

    一种面向流程对象数据的规则提取方法

    公开(公告)号:CN104346442A

    公开(公告)日:2015-02-11

    申请号:CN201410541881.8

    申请日:2014-10-14

    Applicant: 济南大学

    CPC classification number: G06F16/35

    Abstract: 本发明涉及一种面向流程对象数据的规则提取方法,包括如下步骤:步骤S1:确定流程对象数据的最佳聚簇数量;步骤S2:采用K-means算法对流程对象数据进行聚类,同时验证步骤S1中的最佳聚簇数量的合理性,如果步骤S1中的最佳聚簇数量合理则转到步骤S3,否则转到步骤S1;步骤S3:采用Apriori维间关联规则算法挖掘不同测点的聚类间的关联规则;步骤S4:确定流程对象数据的最强关联链;步骤S5:根据最强关联链上所有测点的状态值,得到记载各测点状态值的状态链,根据状态链对相关行业进行指导;提高数据规则提取的效率,以及从流程对象数据中提取知识的能力。

    一种文本推荐方法、系统、存储介质和设备

    公开(公告)号:CN113688229B

    公开(公告)日:2024-04-23

    申请号:CN202111016193.6

    申请日:2021-08-31

    Applicant: 济南大学

    Abstract: 本发明属于文本推荐领域,提供了一种文本推荐方法、系统、存储介质和设备。其中,该方法包括获取待推荐文本的关键词;基于所述待推荐文本与已知属性文本的关键词,聚类所有待推荐文本;根据所有待推荐文本的关键词与已知文本属性的关键词之间的距离,依次推荐文本;其中,在聚类所有候选文本的过程中,考虑所有待推荐文本与已知属性文本的关键词之间的亲和度信息,将得到的亲和度与属性的权重相结合来构造基于维度亲和度的属性权重套索正则项,同时利用最大熵正则化,以实现属性权重的优化分布。

    一种基于多视图的无人驾驶场景聚类方法及系统

    公开(公告)号:CN113723540B

    公开(公告)日:2024-04-19

    申请号:CN202111027470.3

    申请日:2021-09-02

    Applicant: 济南大学

    Abstract: 本发明公开了一种基于多视图的无人驾驶场景聚类方法及系统,包括以下步骤:获取无人驾驶车辆当前多视图数据,并进行标准化处理;基于迁移学习对每个视图进行聚类分析:(1)根据设定的类别数分别进行聚类分析,得到当前隶属度矩阵;(2)根据该视图与其他视图的当前隶属度矩阵,以及设定的迁移学习因子,对隶属度矩阵进行更新,得到新的聚类中心,并更新视图的权重;根据迁移学习前后的聚类结果,判断是否需要继续进行迁移学习,若是,更新迁移学习因子,对每个视图再次进行聚类分析,若否,聚类结束,得到无人驾驶场景的道路识别结果。本发明通过基于激光雷达数据和图像数据两个视图进行场景中道路的识别,数据的利用更为充分,识别精度高。

Patent Agency Ranking