一种基于LSTM神经网络的有效停车时空资源预测方法

    公开(公告)号:CN110555990B

    公开(公告)日:2021-04-13

    申请号:CN201910809828.4

    申请日:2019-08-29

    Abstract: 本发明公开了一种基于LSTM神经网络的有效停车时空资源预测方法,首先,根据不同日子特性条件下的历史数据,采用LSTM神经网络建立停车时长预测模型,对未来某一时段内进场车辆的停车时长进行预估,得到预估消耗的停车资源;其次,建立下一时段内有效停车时空资源预测模型,通过综合当前统计时段内,进出场车辆与不出场车辆的时空利用数据信息,结合前一时段有效停车时空资源量,计算出下一时段的有效停车时空资源量。本发明方法提出两个模型以从时空资源的角度去呈现和计算停车场资源,模型鲁棒性好,预测结果精确度较高,对未来停车场实现高度共享和智慧化的停车预约服务与停车资源调度分配奠定了理论基础。

    基于改进GMDH算法的封闭式停车场停车需求预测方法

    公开(公告)号:CN112419711A

    公开(公告)日:2021-02-26

    申请号:CN202011140333.6

    申请日:2020-10-22

    Abstract: 本发明公开了一种基于改进GMDH算法的封闭式停车场停车需求预测方法,使用GMDH算法对封闭式停车场进场车流量训练,在训练过程中针对GMDH算法建模泛化能力差的问题,结合集成学习(Ensemble Learning)的思想对GMDH算法进行改进,提高GMDH模型泛化能力,并将改进的算法应用到封闭式停车场进场停车需求预测模型的构建中。该方法减少了对历史数据的依赖、降低了数据成本,并且具有较高的预测精度,可以快速、有效地对封闭式停车场停车需求进行预测。后期可基于用户均衡理论,结合智能交通诱导系统,实现区域性的、不同特性的停车场停车资源共享与调度,对智慧城市的建设具有重大的实用价值。

    一种车载端多目标识别跟踪预测方法

    公开(公告)号:CN112307921A

    公开(公告)日:2021-02-02

    申请号:CN202011141884.4

    申请日:2020-10-22

    Abstract: 本发明公开了一种车载端多目标识别跟踪预测方法,该方法是基于YOLOv5s(You Only Look Once v5s)和FairMOT(Fair Multi‑Object Tracking)融合的车载端多目标识别跟踪预测方法,通过使用YOLOv5s深度学习对象检测技术快速准确实时地检测道路前方车辆、行人、障碍物等,并将YOLOv5s模型融入FairMOT架构检测模块在单个网络中进行目标检测和重新识别跟踪,实现道路上车辆前方交通目标的位置检测、类型识别、多目标运动轨迹跟踪,从而达到对车辆前方交通目标换道、跟驰、减速等驾驶行为的预测。

    基于改进GMDH算法的封闭式停车场停车需求预测方法

    公开(公告)号:CN112419711B

    公开(公告)日:2022-05-17

    申请号:CN202011140333.6

    申请日:2020-10-22

    Abstract: 本发明公开了一种基于改进GMDH算法的封闭式停车场停车需求预测方法,使用GMDH算法对封闭式停车场进场车流量训练,在训练过程中针对GMDH算法建模泛化能力差的问题,结合集成学习(Ensemble Learning)的思想对GMDH算法进行改进,提高GMDH模型泛化能力,并将改进的算法应用到封闭式停车场进场停车需求预测模型的构建中。该方法减少了对历史数据的依赖、降低了数据成本,并且具有较高的预测精度,可以快速、有效地对封闭式停车场停车需求进行预测。后期可基于用户均衡理论,结合智能交通诱导系统,实现区域性的、不同特性的停车场停车资源共享与调度,对智慧城市的建设具有重大的实用价值。

    一种车载端多目标识别跟踪预测方法

    公开(公告)号:CN112307921B

    公开(公告)日:2022-05-17

    申请号:CN202011141884.4

    申请日:2020-10-22

    Abstract: 本发明公开了一种车载端多目标识别跟踪预测方法,该方法是基于YOLOv5s(You Only Look Once v5s)和FairMOT(Fair Multi‑Object Tracking)融合的车载端多目标识别跟踪预测方法,通过使用YOLOv5s深度学习对象检测技术快速准确实时地检测道路前方车辆、行人、障碍物等,并将YOLOv5s模型融入FairMOT架构检测模块在单个网络中进行目标检测和重新识别跟踪,实现道路上车辆前方交通目标的位置检测、类型识别、多目标运动轨迹跟踪,从而达到对车辆前方交通目标换道、跟驰、减速等驾驶行为的预测。

    一种基于LSTM神经网络的有效停车时空资源预测方法

    公开(公告)号:CN110555990A

    公开(公告)日:2019-12-10

    申请号:CN201910809828.4

    申请日:2019-08-29

    Abstract: 本发明公开了一种基于LSTM神经网络的有效停车时空资源预测方法,首先,根据不同日子特性条件下的历史数据,采用LSTM神经网络建立停车时长预测模型,对未来某一时段内进场车辆的停车时长进行预估,得到预估消耗的停车资源;其次,建立下一时段内有效停车时空资源预测模型,通过综合当前统计时段内,进出场车辆与不出场车辆的时空利用数据信息,结合前一时段有效停车时空资源量,计算出下一时段的有效停车时空资源量。本发明方法提出两个模型以从时空资源的角度去呈现和计算停车场资源,模型鲁棒性好,预测结果精确度较高,对未来停车场实现高度共享和智慧化的停车预约服务与停车资源调度分配奠定了理论基础。

    一种基于深度残差网络模型的入口匝道联动控制方法

    公开(公告)号:CN110503833B

    公开(公告)日:2021-06-08

    申请号:CN201910809931.9

    申请日:2019-08-29

    Abstract: 本发明公开了一种基于深度残差网络模型的入口匝道联动控制方法,首先,收集交通流特征历史数据,预处理后进行数图转换;其次,输入图像数据,建立并训练交通流特征值的预测模型;第三,收集实时交通流特征数据,预处理后数图转换输入模型,输出短时变化趋势预测图,并利用图数转换将预测趋势图转为文本数据;第四,转换后的文本数据,利用训练好的预测模型对道路交通特征值进行短时预测,对汇入主线的车流量提前进行联动控制;最后,使用VB+VISSIM程序进行ALINEA算法的仿真评价与分析,并发布路况信息。本发明控制方法,数据预处理后分别进行数图转换,数图转换可提取二维图像更多细节特征,降低模型训练和预测时间,提高预测精度与实时信息处理速度。

    一种基于深度残差网络模型的入口匝道联动控制方法

    公开(公告)号:CN110503833A

    公开(公告)日:2019-11-26

    申请号:CN201910809931.9

    申请日:2019-08-29

    Abstract: 本发明公开了一种基于深度残差网络模型的入口匝道联动控制方法,首先,收集交通流特征历史数据,预处理后进行数图转换;其次,输入图像数据,建立并训练交通流特征值的预测模型;第三,收集实时交通流特征数据,预处理后数图转换输入模型,输出短时变化趋势预测图,并利用图数转换将预测趋势图转为文本数据;第四,转换后的文本数据,利用训练好的预测模型对道路交通特征值进行短时预测,对汇入主线的车流量提前进行联动控制;最后,使用VB+VISSIM程序进行ALINEA算法的仿真评价与分析,并发布路况信息。本发明控制方法,数据预处理后分别进行数图转换,数图转换可提取二维图像更多细节特征,降低模型训练和预测时间,提高预测精度与实时信息处理速度。

Patent Agency Ranking