基于MCP稀疏表示字典学习模型的显著性检测方法

    公开(公告)号:CN114220058A

    公开(公告)日:2022-03-22

    申请号:CN202111548488.8

    申请日:2021-12-17

    Abstract: 本发明公开了一种基于MCP稀疏表示字典学习模型的显著性检测方法。包括提取图像或视频的超像素特征;基于minimax concave penalty(MCP)稀疏约束设计稀疏表示字典学习模型;使用稀疏表示字典学习模型通过重构误差来学习图像显著性区域,重构误差大的超像素位置被认为是显著性区域;采用基于上下文的方案来获得像素级的统一重构误差。通过利用多尺度重建误差和面向对象的高斯细化过程获取像素级别的显著性检测图;采用贝叶斯积分方法来合并从重构误差中学习到的显著性检测图,得到最终显著性检测结果。本发明将提高图像或视频的显著性检测水平。此外,本发明通过对现实图像和视频信号进行显著性检测验证,相较于传统的显著性检测方法具有更好的效果。

    基于MCP稀疏表示字典学习模型的显著性检测方法

    公开(公告)号:CN114220058B

    公开(公告)日:2024-10-22

    申请号:CN202111548488.8

    申请日:2021-12-17

    Abstract: 本发明公开了一种基于MCP稀疏表示字典学习模型的显著性检测方法。包括提取图像或视频的超像素特征;基于minimax concave penalty(MCP)稀疏约束设计稀疏表示字典学习模型;使用稀疏表示字典学习模型通过重构误差来学习图像显著性区域,重构误差大的超像素位置被认为是显著性区域;采用基于上下文的方案来获得像素级的统一重构误差。通过利用多尺度重建误差和面向对象的高斯细化过程获取像素级别的显著性检测图;采用贝叶斯积分方法来合并从重构误差中学习到的显著性检测图,得到最终显著性检测结果。本发明将提高图像或视频的显著性检测水平。此外,本发明通过对现实图像和视频信号进行显著性检测验证,相较于传统的显著性检测方法具有更好的效果。

Patent Agency Ranking