一种高热导薄壁陶瓷管及其制造方法

    公开(公告)号:CN112408952B

    公开(公告)日:2022-07-15

    申请号:CN202011413358.9

    申请日:2020-12-03

    Abstract: 本发明提供一种高热导薄壁陶瓷管及其制造方法,其中,高热导薄壁陶瓷管的制造方法,包括:步骤一、取一定量4N纯度以上、粒度D50为0.2μm~0.6μm的氧化铝粉末原料进行精细处理;步骤二、在加热状态下,将处理过的氧化铝粉末与粘结剂混合均匀,挤出制得陶瓷喂料;步骤三、将陶瓷喂料注塑成型,制得薄壁管生胚;步骤四、对薄壁管生胚进行脱脂处理;步骤五、对脱脂处理后的薄壁管进行保温;步骤六、保温后,烧结制得薄壁陶瓷管。通过上述方法制得的陶瓷管,管内径为3mm~4mm,壁厚为0.3mm~0.5mm,相对密度在99.5%以上,室温下热导率能够达到30W/(m·K)以上,1000℃热导率能够达到7W/(m·K)以上。

    一种高热导薄壁陶瓷管及其制造方法

    公开(公告)号:CN112408952A

    公开(公告)日:2021-02-26

    申请号:CN202011413358.9

    申请日:2020-12-03

    Abstract: 本发明提供一种高热导薄壁陶瓷管及其制造方法,其中,高热导薄壁陶瓷管的制造方法,包括:步骤一、取一定量4N纯度以上、粒度D50为0.2μm~0.6μm的氧化铝粉末原料进行精细处理;步骤二、在加热状态下,将处理过的氧化铝粉末与粘结剂混合均匀,挤出制得陶瓷喂料;步骤三、将陶瓷喂料注塑成型,制得薄壁管生胚;步骤四、对薄壁管生胚进行脱脂处理;步骤五、对脱脂处理后的薄壁管进行保温;步骤六、保温后,烧结制得薄壁陶瓷管。通过上述方法制得的陶瓷管,管内径为3mm~4mm,壁厚为0.3mm~0.5mm,相对密度在99.5%以上,室温下热导率能够达到30W/(m·K)以上,1000℃热导率能够达到7W/(m·K)以上。

    一种纯钨材料和绝缘陶瓷的连接方法

    公开(公告)号:CN111348932A

    公开(公告)日:2020-06-30

    申请号:CN201811578816.7

    申请日:2018-12-24

    Abstract: 本发明属于材料处理技术,具体涉及一种纯钨材料和绝缘陶瓷的连接方法,将钨材料预处理之后在其表面制备过渡层,之后在制备陶瓷层,钨粉、氧化铝粉、二氧化硅粉、碳酸钙粉组成过渡层固体粉末,氧化铝粉、二氧化硅粉、碳酸钙粉组成陶瓷层固体粉末,有机溶剂、有机粘结剂制成有机粘结剂,最后将涂覆过过渡层和陶瓷层的钨材料进行高温烧结,使纯钨基体、过渡层和陶瓷层紧密结合在一起,在界面处形成冶金结合,利用预处理工艺对纯钨材料进行表面处理,使其具有一定的表面粗糙度和光洁度,能增大与过渡层的接触面,可以有效地完成纯钨材料的表面绝缘化,达到电气使用条件;得到的涂层为冶金结合态,能有效地形成热传导通道,提高整体部件的热导率。

    一种纯钨材料和绝缘陶瓷的连接方法

    公开(公告)号:CN111348932B

    公开(公告)日:2022-03-22

    申请号:CN201811578816.7

    申请日:2018-12-24

    Abstract: 本发明属于材料处理技术,具体涉及一种纯钨材料和绝缘陶瓷的连接方法,将钨材料预处理之后在其表面制备过渡层,之后在制备陶瓷层,钨粉、氧化铝粉、二氧化硅粉、碳酸钙粉组成过渡层固体粉末,氧化铝粉、二氧化硅粉、碳酸钙粉组成陶瓷层固体粉末,有机溶剂、有机粘结剂制成有机粘结剂,最后将涂覆过过渡层和陶瓷层的钨材料进行高温烧结,使纯钨基体、过渡层和陶瓷层紧密结合在一起,在界面处形成冶金结合,利用预处理工艺对纯钨材料进行表面处理,使其具有一定的表面粗糙度和光洁度,能增大与过渡层的接触面,可以有效地完成纯钨材料的表面绝缘化,达到电气使用条件;得到的涂层为冶金结合态,能有效地形成热传导通道,提高整体部件的热导率。

    一种用于磁约束核聚变反应堆部件腐蚀监测的静电探针

    公开(公告)号:CN102651241A

    公开(公告)日:2012-08-29

    申请号:CN201110047719.7

    申请日:2011-02-28

    Inventor: 钟光武

    Abstract: 本发明涉及一种用于磁约束核聚变反应堆部件腐蚀监测的静电探针,静电探针与待测核聚变反应堆第一壁部件固定,静电探针沿轴向设有若干个互相平行的阶梯面;静电探针的顶部平面与待测核聚变反应堆第一壁部件接触等离子体流的表面位于同一平面或略突出于待测核聚变反应堆第一壁部件接触等离子体流表面;静电探针由顶部沿轴向最后一个阶梯面与待测核聚变反应堆第一壁部件允许被等离子体流腐蚀的极限位置位于同一平面。静电探针由顶部沿轴向3个阶梯面的面积比为1∶2∶4。本发明通过测量探针收集的等离子体流电流进行,不需要人工干预,具有实时监测,结构简单,抗干扰,可靠性高的特点。

Patent Agency Ranking