一种ABS基陶瓷纳米粒子复合材料及应用和制备方法

    公开(公告)号:CN111763400A

    公开(公告)日:2020-10-13

    申请号:CN202010559195.9

    申请日:2020-06-18

    Abstract: 本发明公开了一种ABS基的陶瓷纳米粒子复合材料及应用和制备方法。现有复合储能材料的储能性能随陶瓷粒子的质量分数变化有较大的波动。本发明一种ABS基的陶瓷纳米粒子复合材料,包括聚合物基体和分散在聚合物基体中的填充粒子。聚合物基体采用ABS。该复合材料用于作为介电材料使用,具体可以作为电容器的电介质。本发明采用ABS聚合物作为聚合物基体,ABS聚合物的电绝缘性良好,并且不易受温度、湿度和频率的影响,可在绝大多数环境下使用,其介电常数在2.4~4.1之间;相较于其他聚合物来讲,ABS聚合物本身的储能密度较高,可释放密度也较高,效率更高,同时还保持着较高的击穿场强。

    基于高击穿高储能的纳米夹心结构复合材料的制备方法

    公开(公告)号:CN110615956A

    公开(公告)日:2019-12-27

    申请号:CN201910656507.5

    申请日:2019-07-19

    Abstract: 本发明公开了基于高击穿高储能的纳米夹心结构复合材料的制备方法。电容器材料要求具有高介电常数、高极化值、低介质损耗和高电场强度。本发明如下:1、氮化硼纳米片加入到无水乙醇。2、将二维纳米粒子与氮化硼复合。3、制备聚合物溶液。4、将复合粉末与聚合物溶液混合。5、制备复合材料薄膜雏形。6、通过热处理和淬火制备最终的复合材料薄膜。本发明既能使复合材料保持较高的击穿强度,又能显著提高复合材料的可释放能量密度。本发明中的双键聚合物提高了本身的介电常数同时降低了损耗,加入交联剂提高填料与聚合物之间的相容性,制备出具有高击穿强度、高储能密度的复合薄膜材料。

    基于高击穿高储能的纳米夹心结构复合材料的制备方法

    公开(公告)号:CN110615956B

    公开(公告)日:2021-10-29

    申请号:CN201910656507.5

    申请日:2019-07-19

    Abstract: 本发明公开了基于高击穿高储能的纳米夹心结构复合材料的制备方法。电容器材料要求具有高介电常数、高极化值、低介质损耗和高电场强度。本发明如下:1、氮化硼纳米片加入到无水乙醇。2、将二维纳米粒子与氮化硼复合。3、制备聚合物溶液。4、将复合粉末与聚合物溶液混合。5、制备复合材料薄膜雏形。6、通过热处理和淬火制备最终的复合材料薄膜。本发明既能使复合材料保持较高的击穿强度,又能显著提高复合材料的可释放能量密度。本发明中的双键聚合物提高了本身的介电常数同时降低了损耗,加入交联剂提高填料与聚合物之间的相容性,制备出具有高击穿强度、高储能密度的复合薄膜材料。

    一种ABS基陶瓷纳米粒子复合材料及应用和制备方法

    公开(公告)号:CN111763400B

    公开(公告)日:2023-03-10

    申请号:CN202010559195.9

    申请日:2020-06-18

    Abstract: 本发明公开了一种ABS基的陶瓷纳米粒子复合材料及应用和制备方法。现有复合储能材料的储能性能随陶瓷粒子的质量分数变化有较大的波动。本发明一种ABS基的陶瓷纳米粒子复合材料,包括聚合物基体和分散在聚合物基体中的填充粒子。聚合物基体采用ABS。该复合材料用于作为介电材料使用,具体可以作为电容器的电介质。本发明采用ABS聚合物作为聚合物基体,ABS聚合物的电绝缘性良好,并且不易受温度、湿度和频率的影响,可在绝大多数环境下使用,其介电常数在2.4~4.1之间;相较于其他聚合物来讲,ABS聚合物本身的储能密度较高,可释放密度也较高,效率更高,同时还保持着较高的击穿场强。

    一种无铅反铁电体与聚合物共混的电介质材料制备方法

    公开(公告)号:CN111574792A

    公开(公告)日:2020-08-25

    申请号:CN202010254663.1

    申请日:2020-04-02

    Abstract: 本发明公开了一种无铅反铁电体与聚合物共混的电介质材料制备方法。本发明制备得到的电介质材料由聚合物和分散在聚合物中的无铅反铁电粒子——钛酸铋钠-钛酸锶钡组成;所述的无铅反铁电粒子通过固相法合成。所述的无铅反铁电粒子通过加入偶联剂进行改性。采用流延法制备得到复合薄膜材料,其中无铅反铁电粒子的质量分数是1~50%,所得的薄膜厚度为5~30微米。本发明采用的反铁电粒子是无铅的,对环境和人体身体健康友好。本发明制备的复合薄膜材料击穿场强>400MV/m,储能密度高达15.3J/cm3;是一种可用于电容器、大功率静电储能材料。

    反铁电陶瓷/PVDF 0-3结构复合材料及其热处理制备方法

    公开(公告)号:CN107216581B

    公开(公告)日:2019-03-29

    申请号:CN201710435500.1

    申请日:2017-06-11

    Abstract: 本发明涉及一种反铁电陶瓷/PVDF0‑3结构复合材料及其热处理制备方法。本发明由反铁电陶瓷粉末和PVDF基聚合物组成,反铁电陶瓷粉末作为添加粒子均匀分布在聚合物基体内,通过流延法制备得到复合材料膜,并将其进行淬火热处理,所得膜厚为1~100微米,复合材料中反铁电陶瓷粒子体积分数在0~70%之间。本发明采用反铁电陶瓷粒子作为填充粒子制备的0‑3复合材料,即可以有效提高复合材料的电位移值与击穿电场值,还能降低剩余极化减少损耗,从而有利于提高复合材料的储能与放能值,提高储放能效率。

    一种无铅反铁电体与聚合物共混的电介质材料制备方法

    公开(公告)号:CN111574792B

    公开(公告)日:2022-10-21

    申请号:CN202010254663.1

    申请日:2020-04-02

    Abstract: 本发明公开了一种无铅反铁电体与聚合物共混的电介质材料制备方法。本发明制备得到的电介质材料由聚合物和分散在聚合物中的无铅反铁电粒子——钛酸铋钠‑钛酸锶钡组成;所述的无铅反铁电粒子通过固相法合成。所述的无铅反铁电粒子通过加入偶联剂进行改性。采用流延法制备得到复合薄膜材料,其中无铅反铁电粒子的质量分数是1~50%,所得的薄膜厚度为5~30微米。本发明采用的反铁电粒子是无铅的,对环境和人体身体健康友好。本发明制备的复合薄膜材料击穿场强>400MV/m,储能密度高达15.3J/cm3;是一种可用于电容器、大功率静电储能材料。

Patent Agency Ranking