一种基于对称视觉注意力网络的高效图像超分辨率方法

    公开(公告)号:CN117252756A

    公开(公告)日:2023-12-19

    申请号:CN202310945726.1

    申请日:2023-07-31

    Abstract: 本发明涉及一种基于对称视觉注意力网络的高效图像超分辨率方法,利用大核卷积的大感受野来提高图像的重建质量,以瓶颈式感受野结构和对称式注意力结构提升深度特征的提取能力,使网络的学习能力进一步增强,使用不同的高效卷积组合,大大减少了参数的数量,同时保持了较大的感受野,以确保重建质量。然后根据感受野大小形成瓶颈注意力块,通过对称结构得到对称大核注意力模块。通过实验对比结果,说明本发明提出的方法可以达到减少网络参数数量,提升网络性能和效率的目的,实现了轻量化的高效图像超分辨率途径。

Patent Agency Ranking