-
公开(公告)号:CN107291803A
公开(公告)日:2017-10-24
申请号:CN201710337894.7
申请日:2017-05-15
Applicant: 广东工业大学
IPC: G06F17/30
CPC classification number: G06F16/20
Abstract: 本发明提供一种融合多类型信息的网络表示方法,包括:步骤1,读取网络结构信息及节点属性信息;步骤2,将所述节点属性信息转换为向量;步骤3,利用降维技术对所述向量进行降维,生成属性特征向量;步骤4,根据所述网络结构信息,生成对应的矩阵G(V,E),其中V表示节点集合,E表示边集合;步骤5,初始化所述节点属性特征向量;步骤6,利用随机游走和滑动窗口方法构建训练样本;步骤7,调整节点向量值,以获得最大化条件概率;步骤8,输出调整后的节点向量作为网络表示。本发明能够高效地融合网络中的多种类型信息,学习到的网络表示可以用于复杂网络的理解挖掘。