-
公开(公告)号:CN109117774B
公开(公告)日:2021-09-28
申请号:CN201810866990.5
申请日:2018-08-01
Applicant: 广东工业大学
Abstract: 本发明涉及计算机视觉技术领域,尤其是一种基于稀疏编码的多视角视频异常检测方法,包括以下步骤:对帧图像进行多视角特征提取;对不同视角的特征进行稀疏编码,得到各个视角下的特征的稀疏表示;依据稀疏表示信息获得一个帧图像下的一致性表示矩阵并给相邻两帧之间的一致性表示矩阵赋予相应的权重值后得到字典A,然后利用字典A对异常事件的视频数据进行测试得到稀疏表示系数的重建误差,从而得到标准化的多视角视频异常检测模型。本发明通过提取视频帧图像多视角特征,建立多视角视频异常检测模型,整合视频多个视角下的特征信息来进行异常检测,并利用视频相邻两帧之间的时间想干性,减少了局部信息的损失,提高了异常检测准确度。
-
公开(公告)号:CN109117774A
公开(公告)日:2019-01-01
申请号:CN201810866990.5
申请日:2018-08-01
Applicant: 广东工业大学
Abstract: 本发明涉及计算机视觉技术领域,尤其是一种基于稀疏编码的多视角视频异常检测方法,包括以下步骤:对帧图像进行多视角特征提取;对不同视角的特征进行稀疏编码,得到各个视角下的特征的稀疏表示;依据稀疏表示信息获得一个帧图像下的一致性表示矩阵并给相邻两帧之间的一致性表示矩阵赋予相应的权重值后得到字典A,然后利用字典A对异常事件的视频数据进行测试得到稀疏表示系数的重建误差,从而得到标准化的多视角视频异常检测模型。本发明通过提取视频帧图像多视角特征,建立多视角视频异常检测模型,整合视频多个视角下的特征信息来进行异常检测,并利用视频相邻两帧之间的时间想干性,减少了局部信息的损失,提高了异常检测准确度。
-