-
公开(公告)号:CN116681960B
公开(公告)日:2024-11-15
申请号:CN202310551874.5
申请日:2023-05-15
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06V10/77 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明提出一种基于K8s的中尺度涡旋智能识别方法及系统,涉及涡旋识别领域。包括将待识别图像输入到基于深度学习的中尺度涡旋识别模型中,对待识别图像进行特征提取,基于CBAM混合注意力机制进行加权;将输出特征图输入至ASPP中,设置膨胀卷积的膨胀率,同时将ASPP中池化分支替换为深度可分离卷积,得到编码器输出的特征图;将编码器输出的特征图输入解码器中,基于SKNet注意力机制计算不同尺寸感受野的权重,实现中尺度涡旋的智能识别。本发明能够准确的识别出海表面高度图像中的气旋式涡旋和反气旋式涡旋,而且还通过引入注意力机制技术使模型更加精确的分割出涡旋的边界信息,有效的解决了之前方法中的中尺度涡旋识别效果泛化性差的问题。
-
公开(公告)号:CN114186668A
公开(公告)日:2022-03-15
申请号:CN202111498488.1
申请日:2021-12-09
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学
Abstract: 本发明公开了一种物联网数据流预测的在线深度学习方法、系统和设备,包括采集观测数据,获取预设时间段内观测数据的目标数据点及目标数据点序列;对原始观测数据进行处理,并构建训练和测试样本;根据训练和测试样本建立ECNN模型进行在线深度学习。对比现有技术,本发明的有益效果在于:采用进化卷积神经网络框架,可以端到端地进行训练,既具有较好的数据特征学习能力,并且还可以随数据流自适应地进化,同时解决了容量可扩展性和可持续性问题。
-
公开(公告)号:CN116681960A
公开(公告)日:2023-09-01
申请号:CN202310551874.5
申请日:2023-05-15
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06V10/77 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明提出一种基于K8s的中尺度涡旋智能识别方法及系统,涉及涡旋识别领域。包括将待识别图像输入到基于深度学习的中尺度涡旋识别模型中,对待识别图像进行特征提取,基于CBAM混合注意力机制进行加权;将输出特征图输入至ASPP中,设置膨胀卷积的膨胀率,同时将ASPP中池化分支替换为深度可分离卷积,得到编码器输出的特征图;将编码器输出的特征图输入解码器中,基于SKNet注意力机制计算不同尺寸感受野的权重,实现中尺度涡旋的智能识别。本发明能够准确的识别出海表面高度图像中的气旋式涡旋和反气旋式涡旋,而且还通过引入注意力机制技术使模型更加精确的分割出涡旋的边界信息,有效的解决了之前方法中的中尺度涡旋识别效果泛化性差的问题。
-
公开(公告)号:CN115879569B
公开(公告)日:2023-05-23
申请号:CN202310214205.9
申请日:2023-03-08
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: G06N20/00 , G06F18/25 , G16Y40/10 , G06N3/0455 , G06N3/084
Abstract: 本发明提出了一种IoT观测数据的在线学习方法及系统,涉及数据处理技术领域,根据获取的初始时序观测数据,初始化在线深度学习模型;实时获取传感器生成的时序观测数据,根据时序观测数据形成输入数据流;在线深度学习模型处理输入数据流,生成最终预测结果;在处理输入数据流的过程中,对输入数据流进行即时学习,实时动态更新在线深度学习模型;即时学习,是基于数据流的均值和方差,学习数据分布,构造准正态分布,重构新的样本,实现变分注意力网络,基于分布差异、重构差异和推理差异,进行模型的动态调整;本发明学习不同隐藏层之间的隐藏信息,提高模型推理的准确性,同时通过在线学习,对不同隐藏层间的参数进行动态调整。
-
公开(公告)号:CN115879569A
公开(公告)日:2023-03-31
申请号:CN202310214205.9
申请日:2023-03-08
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: G06N20/00 , G06F18/25 , G16Y40/10 , G06N3/0455 , G06N3/084
Abstract: 本发明提出了一种IoT观测数据的在线学习方法及系统,涉及数据处理技术领域,根据获取的初始时序观测数据,初始化在线深度学习模型;实时获取传感器生成的时序观测数据,根据时序观测数据形成输入数据流;在线深度学习模型处理输入数据流,生成最终预测结果;在处理输入数据流的过程中,对输入数据流进行即时学习,实时动态更新在线深度学习模型;即时学习,是基于数据流的均值和方差,学习数据分布,构造准正态分布,重构新的样本,实现变分注意力网络,基于分布差异、重构差异和推理差异,进行模型的动态调整;本发明学习不同隐藏层之间的隐藏信息,提高模型推理的准确性,同时通过在线学习,对不同隐藏层间的参数进行动态调整。
-
公开(公告)号:CN115861646A
公开(公告)日:2023-03-28
申请号:CN202211466939.8
申请日:2022-11-22
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06V10/44 , G06V10/80 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明提出了一种基于结构重参数化的轻量级目标检测方法及系统,包括:获取待目标检测的数据样本并进行预处理;将预处理后的数据样本输入至网络推理模型中输出目标检测结果,所述网络推理模型为是由训练好的多分支网络训练模块采用结构重参数转换成的单路结构的网络模型,其中,结构重参数转换的方式为分支合并和卷积序列合并。通过结构重参数化方式解耦训练和推理阶段,在训练阶段采用多分支结构获取更多语义信息和特征表示,迭代更新权重参数,同时在推理阶段采用带有训练权重信息的单路结构,在加快模型的推理速度的同时保证模型精度。
-
公开(公告)号:CN115293662A
公开(公告)日:2022-11-04
申请号:CN202211230749.6
申请日:2022-10-10
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明提出了融合并行与分布式的海洋观测数据智能计算方法及系统,涉及海洋观测时序数据流智能计算领域,实时获取每个通道的海洋观测数据流存储到分布式集群;对数据流进行乱序、去重和缺失预处理;基于预处理后的海洋观测数据流,采用超算MPI并行训练模型,进行多通道在线学习模型训练,得到每个通道的最新海洋观测数据智能计算模型;基于Flink分布式流处理系统,对每个通道不断流入的海洋观测数据,选择通道对应的最新海洋观测数据智能计算模型,进行实时推理与预测;本发明适合多通道多任务的应用场景,有效支持流式数据的在线学习与推理任务以及高通量传感器数据的管理,实现数据的多通道计算模型的快速迭代升级以及数据的实时推理。
-
公开(公告)号:CN115908772A
公开(公告)日:2023-04-04
申请号:CN202211475396.6
申请日:2022-11-23
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06V10/20 , G06V10/42 , G06V10/44 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明提出了一种基于Transformer和融合注意力机制的目标检测方法,包括:获取待检测图像进行预处理;将预处理后的待检测图像输入至训练好的目标检测模型中,输出检测结果;其中,所述目标检测模型包括Swin Transformer模块、注意力融合模块和检测模块,所述Swin Transformer模块用于提取待检测图像的全局特征,所述注意力融合模块用于局部特征提取,并将全局特征和局部特征采用跨层级联的方式进行融合,所述检测模块用于根据融合后的特征输出检测结果。融合局部感受野与Transformer的全局信息,以进一步提升局部特征与全局信息融合的能力,增强低信噪比目标的检测效果。
-
-
-
-
-
-
-