髋关节X光图像自动分析方法

    公开(公告)号:CN109567839B

    公开(公告)日:2022-04-26

    申请号:CN201811389123.3

    申请日:2018-11-20

    Abstract: 本发明公开了一种髋关节X光图像自动分析方法,包括:获取预先进行了S个关键点位置标注的髋关节X光图像;对于预先收集的一系列髋关节X光图像,在标注的每一个关键点上分别取一张切片图像,所得到的每一切片图像即为初步模板,从而构成一个初步模板库,则对于S个关键点共有S个初始模板库;分别对每一个初始模板库中的初步模板采用模板匹配的方法求取相似度,最终选取出多个模板,构成能够用于查找一个关键点的有序模板库,则对于S个关键点共有S个有序模板库;对于待分析的髋关节X光图像,通过模板匹配与聚类的方式结合每一有序模板库实现每一关键点的分析查找。该方法可以自动的、准确的实现髋关节X光图像分析。

    髋关节超声图像自动分析方法

    公开(公告)号:CN111882531A

    公开(公告)日:2020-11-03

    申请号:CN202010680820.5

    申请日:2020-07-15

    Abstract: 本发明公开了一种髋关节超声图像自动分析方法,包括:获取多个预先进行了若干关键线段位置标注的髋关节超声图像,并对每一髋关节超声图像中的每一关键线段分别生成热力图;以获取的髋关节超声图像为训练数据,以生成的热力图做训练目标,训练一个用于回归热力图的沙漏形神经网络;测试阶段,对于待分析的髋关节超声图像,通过训练好的沙漏形神经网络输出对应的热力图,再利用加权票选的方式从热力图中定位出每一关键线段位置,从而获得关键线段之间的夹角。上述方法基于神经网络生成热力图票选的方式自动的对髋关节超声图像进行分析,不仅加快了分析速度、提高了分析效率,还可以确保分析结果的准确性。

    髋关节超声图像自动分析方法

    公开(公告)号:CN111882531B

    公开(公告)日:2021-08-17

    申请号:CN202010680820.5

    申请日:2020-07-15

    Abstract: 本发明公开了一种髋关节超声图像自动分析方法,包括:获取多个预先进行了若干关键线段位置标注的髋关节超声图像,并对每一髋关节超声图像中的每一关键线段分别生成热力图;以获取的髋关节超声图像为训练数据,以生成的热力图做训练目标,训练一个用于回归热力图的沙漏形神经网络;测试阶段,对于待分析的髋关节超声图像,通过训练好的沙漏形神经网络输出对应的热力图,再利用加权票选的方式从热力图中定位出每一关键线段位置,从而获得关键线段之间的夹角。上述方法基于神经网络生成热力图票选的方式自动的对髋关节超声图像进行分析,不仅加快了分析速度、提高了分析效率,还可以确保分析结果的准确性。

    髋关节X光图像自动分析方法

    公开(公告)号:CN109567839A

    公开(公告)日:2019-04-05

    申请号:CN201811389123.3

    申请日:2018-11-20

    Abstract: 本发明公开了一种髋关节X光图像自动分析方法,包括:获取预先进行了S个关键点位置标注的髋关节X光图像;对于预先收集的一系列髋关节X光图像,在标注的每一个关键点上分别取一张切片图像,所得到的每一切片图像即为初步模板,从而构成一个初步模板库,则对于S个关键点共有S个初始模板库;分别对每一个初始模板库中的初步模板采用模板匹配的方法求取相似度,最终选取出多个模板,构成能够用于查找一个关键点的有序模板库,则对于S个关键点共有S个有序模板库;对于待分析的髋关节X光图像,通过模板匹配与聚类的方式结合每一有序模板库实现每一关键点的分析查找。该方法可以自动的、准确的实现髋关节X光图像分析。

Patent Agency Ranking