基于卷积神经网络和多重注意力机制的骨骼年龄评估方法

    公开(公告)号:CN112006654A

    公开(公告)日:2020-12-01

    申请号:CN202010685114.X

    申请日:2020-07-16

    Abstract: 本发明公开了一种基于卷积神经网络和多重注意力机制的骨骼年龄评估方法,包括:训练阶段,主干网络输入为掌骨影像,通过特征提取器获得特征图F,进而得到骨龄回归值;多重注意力模块输入为特征图F,经通过压缩操作与注意力图拆分操作得到M个子注意力图,每个子注意力图再与特征图F点乘,进而得到对应的骨龄回归值;结合主干网络与多重注意力模块得到的骨龄回归值,采用多任务学习策略训练神经网络;测试阶段,将待测掌骨影像输入至训练后的神经网络中,通过其中主干网络得到骨龄评估值。上述模型可被端到端训练;同时能自动生成注意力分布图,具有更好的泛化性;此外,基于2D卷积神经网络,速度快,精度高,平均评估误差在4.1个月内。

    髋关节超声图像自动分析方法

    公开(公告)号:CN111882531A

    公开(公告)日:2020-11-03

    申请号:CN202010680820.5

    申请日:2020-07-15

    Abstract: 本发明公开了一种髋关节超声图像自动分析方法,包括:获取多个预先进行了若干关键线段位置标注的髋关节超声图像,并对每一髋关节超声图像中的每一关键线段分别生成热力图;以获取的髋关节超声图像为训练数据,以生成的热力图做训练目标,训练一个用于回归热力图的沙漏形神经网络;测试阶段,对于待分析的髋关节超声图像,通过训练好的沙漏形神经网络输出对应的热力图,再利用加权票选的方式从热力图中定位出每一关键线段位置,从而获得关键线段之间的夹角。上述方法基于神经网络生成热力图票选的方式自动的对髋关节超声图像进行分析,不仅加快了分析速度、提高了分析效率,还可以确保分析结果的准确性。

    髋关节超声图像自动分析方法

    公开(公告)号:CN111882531B

    公开(公告)日:2021-08-17

    申请号:CN202010680820.5

    申请日:2020-07-15

    Abstract: 本发明公开了一种髋关节超声图像自动分析方法,包括:获取多个预先进行了若干关键线段位置标注的髋关节超声图像,并对每一髋关节超声图像中的每一关键线段分别生成热力图;以获取的髋关节超声图像为训练数据,以生成的热力图做训练目标,训练一个用于回归热力图的沙漏形神经网络;测试阶段,对于待分析的髋关节超声图像,通过训练好的沙漏形神经网络输出对应的热力图,再利用加权票选的方式从热力图中定位出每一关键线段位置,从而获得关键线段之间的夹角。上述方法基于神经网络生成热力图票选的方式自动的对髋关节超声图像进行分析,不仅加快了分析速度、提高了分析效率,还可以确保分析结果的准确性。

    基于卷积神经网络和多重注意力机制的骨骼年龄评估方法

    公开(公告)号:CN112006654B

    公开(公告)日:2021-07-13

    申请号:CN202010685114.X

    申请日:2020-07-16

    Abstract: 本发明公开了一种基于卷积神经网络和多重注意力机制的骨骼年龄评估方法,包括:训练阶段,主干网络输入为掌骨影像,通过特征提取器获得特征图F,进而得到骨龄回归值;多重注意力模块输入为特征图F,经通过压缩操作与注意力图拆分操作得到M个子注意力图,每个子注意力图再与特征图F点乘,进而得到对应的骨龄回归值;结合主干网络与多重注意力模块得到的骨龄回归值,采用多任务学习策略训练神经网络;测试阶段,将待测掌骨影像输入至训练后的神经网络中,通过其中主干网络得到骨龄评估值。上述模型可被端到端训练;同时能自动生成注意力分布图,具有更好的泛化性;此外,基于2D卷积神经网络,速度快,精度高,平均评估误差在4.1个月内。

Patent Agency Ranking