-
公开(公告)号:CN118692632A
公开(公告)日:2024-09-24
申请号:CN202410705138.5
申请日:2024-06-03
Applicant: 安徽大学 , 安徽中医药大学第一附属医院(安徽省中医院) , 安徽医科大学
IPC: G16H30/00 , G16H15/00 , G06F18/24 , G06F18/214 , G06N3/0455 , G06N3/0464 , G06N3/0895 , G06F17/16 , G06F17/18
Abstract: 本发明公开一种基于中文大语言模型的医学影像质量控制方法,先使用基于自监督学习的掩码自编码器对视觉编码器进行预训练,使用包含标签的医学影像对模型进行微调,将医学影像输入到预训练的视觉编码器中,得到视觉特征,将影像描述作为文本提示输入基于中文大语言模型的文本编码器中,得到文本特征,将两个特征投射为相同尺寸再进行拼接,得到最终特征,将最终特征输入到使用高效微调方法(LoRA)的中文大语言模型中,得到质量控制报告,进行实体提取,再对实体进行编码,计算其与真实标签编码之间的距离,采用对比学习进行微调。本发明能够用于对2D和3D医学影像进行质量控制。
-
公开(公告)号:CN117496280B
公开(公告)日:2024-04-02
申请号:CN202410004772.6
申请日:2024-01-03
Applicant: 安徽大学 , 安徽中医药大学第一附属医院
IPC: G06V10/764 , G06N3/045 , G06N3/0464 , G06V10/44 , G06V10/82
Abstract: 本发明涉及提供一种基于3D卷积和多标签解码的颅脑CT影像质量控制方法。方法包括:获取待评价的颅脑CT序列图像;将待评价的颅脑CT序列图像输入至训练好的图像质量评价模型的3D卷积网络,提取待评价的颅脑CT序列图像的时空特征;将时空特征输入至图像质量评价模型基于Transformer的多标签解码器,获取查询特征;将查询特征输入至图像质量评价模型的线性分类器,预测待评价的颅脑CT序列图像存在的质量问题。本发明解决了模型效率低、数据不平衡的多标签分类问题,为颅脑CT图像的质量控制提供了新方向。
-
公开(公告)号:CN117496280A
公开(公告)日:2024-02-02
申请号:CN202410004772.6
申请日:2024-01-03
Applicant: 安徽大学 , 安徽中医药大学第一附属医院
IPC: G06V10/764 , G06N3/045 , G06N3/0464 , G06V10/44 , G06V10/82
Abstract: 本发明涉及提供一种基于3D卷积和多标签解码的颅脑CT影像质量控制方法。方法包括:获取待评价的颅脑CT序列图像;将待评价的颅脑CT序列图像输入至训练好的图像质量评价模型的3D卷积网络,提取待评价的颅脑CT序列图像的时空特征;将时空特征输入至图像质量评价模型基于Transformer的多标签解码器,获取查询特征;将查询特征输入至图像质量评价模型的线性分类器,预测待评价的颅脑CT序列图像存在的质量问题。本发明解决了模型效率低、数据不平衡的多标签分类问题,为颅脑CT图像的质量控制提供了新方向。
-
公开(公告)号:CN114445859B
公开(公告)日:2025-05-13
申请号:CN202111679104.6
申请日:2021-12-31
Applicant: 讯飞智元信息科技有限公司 , 安徽大学
IPC: G06V40/10 , G06V10/774 , G06V10/82 , G06V10/764 , G06V10/74 , G06N3/0464 , G06N3/08
Abstract: 本申请公开了一种行人重识别方法、相关设备及可读存储介质,先基于包含RGB图像和红外图像的图像对训练得到特征提取模型,在获取待查询图像之后,将待查询图像输入特征提取模型,该特征提取模型输出该待查询图像的特征,通过将该待查询图像的特征与查询数据库中各个行人图像的特征进行匹配,即可得到所述待查询图像对应的行人重识别结果。在本申请中,特征提取模型是基于RGB图像和红外图像训练得到的,无论是对RGB图像进行特征提取,还是对红外图像进行特征提取都能保证提取特征的有效性,因此,能够提升行人重识别结果的准确性。
-
公开(公告)号:CN114445461B
公开(公告)日:2025-05-13
申请号:CN202210095429.8
申请日:2022-01-26
Applicant: 安徽大学
IPC: G06T7/246 , G06N3/0464 , G06N3/08 , G06V10/74 , G06V10/774 , G06V10/764 , G06V10/82
Abstract: 本发明公开了一种基于非配对数据的可见光红外目标跟踪训练方法及装置,方法包括获取不成对的可见光图像和热红外图像,并生成候选样本;利用候选样本对可见光红外跟踪器进行训练,可见光红外跟踪器包括依次连接的模态特定模块、模态共享模块、模态自适应注意力模块和模态适配模块,模态特定模块包括第一模态特定网络和第二模态特定网络,可见光图像作为第一模态特定网络和模态共享模块的输入,热红外图像作为第二模态特定网络和模态共享模块的输入,第一、第二模态特定网络的输出分别与模态共享模块的输出融合后作为模态自适应注意力模块的输入。本发明摆脱了对大规模配准数据的依赖,提升目标跟踪性能。
-
公开(公告)号:CN119942152A
公开(公告)日:2025-05-06
申请号:CN202510035392.3
申请日:2025-01-09
Applicant: 安徽大学
Abstract: 本发明提供一种基于像素级融合的RGBT跟踪网络及使用方法,包括:像素级融合适配器:首先,每个模态由一个低级特征提取层划分,然后馈入单独的Vim块以编码特定特征。接下来,应用令牌和通道连接来沿着不同的特征维度合并两个模态,并且两个附加的Vim块进一步编码该融合的信息。最后,使用具有高效局部细节建模能力的卷积层将融合的特征解码成图像。本发明提出了两阶段的任务导向的渐进式学习框架。第一阶段,多专家自适应蒸馏(MAD)。旨在从具有不同结构的多种图像融合模型中继承优越的融合能力。第二阶段,解耦表示微调策略(DRF),通过排斥损失明确分离任务相关和任务不相关信息来提高融合精度,通过重构损失保证保证信息解耦的完备性,从而提高融合鲁棒性。
-
公开(公告)号:CN118967559B
公开(公告)日:2025-02-18
申请号:CN202410924354.9
申请日:2024-07-11
Applicant: 安徽大学
IPC: G06T7/00 , G06T7/73 , G06V10/25 , G06V10/44 , G06V10/764 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/09
Abstract: 本发明公开一种基于SAM和课程学习的太赫兹图像乳腺肿瘤检测方法,为了从太赫兹乳腺图像中准确定位并识别肿瘤,本发明将视觉基础模型SAM应用于肿瘤检测,构建一个双分支的肿瘤检测网络,其中一个分支利用目标检测模型DETR对太赫兹乳腺图像进行粗粒度的肿瘤检测,生成混合提示,包括边界框和类别,其中类别作为一种文本提示,然后将其输入SAM分支进行细粒度肿瘤检测。此外,本发明采用课程学习的思想,将由易到难的太赫兹乳腺肿瘤图像数据集分批次地送入双分支肿瘤检测网络进行训练,以获得较好的检测效果。
-
公开(公告)号:CN119007139B
公开(公告)日:2025-01-28
申请号:CN202411487952.0
申请日:2024-10-24
Applicant: 安徽大学
IPC: G06V20/54 , G06N3/0464 , G06N3/048 , G06V10/44 , G06V10/52 , G06V10/75 , G06V10/80 , G06V10/82 , G06F16/583
Abstract: 本发明提供双重注意力跨模态车辆重识别方法、系统、设备及介质,识别方法包括:获取待查车辆图像和多个基准车辆图像;将多个基准车辆图像和待查车辆图像,输入至重识别模型中的特征提取网络,将基准车辆图像对应的全局特征、局部特征和全局‑局部特征形成目标特征,以及将待查车辆图像对应的全局特征、局部特征和全局‑局部特征形成待查特征;重识别模型中的分类网络根据目标特征和待查特征,确定待查车辆图像和各个基准车辆图像之间的特征综合相似度;重识别模型中的分类网络根据特征综合相似度,从多个基准车辆图像中,选取与待查车辆图像之间的特征综合相似度满足预设匹配条件的多个车辆图像。本发明具有车辆图像重识别精度较高的优点。
-
公开(公告)号:CN119296949A
公开(公告)日:2025-01-10
申请号:CN202411814162.9
申请日:2024-12-11
Applicant: 安徽大学
Abstract: 本发明提供一种扩散源及晶界扩散工艺,涉及永磁体晶界扩散技术领域。所述扩散源为采用DyF3和Sn为扩散剂混合固化剂和分散剂制备得到,并采用扩散源对磁片进行堆叠涂敷后于950‑1000℃进行一级热处理,于680‑700℃,进行二级热处理完成晶界扩散。本发明克服了现有技术的不足,该扩散源和晶界扩散工艺适合产业化应用,实现DyF3在厚磁体上的有效扩散,并提供对应的晶界扩散钕铁硼磁体,有效提升磁体的磁性能。
-
公开(公告)号:CN118887592B
公开(公告)日:2024-12-03
申请号:CN202411381944.8
申请日:2024-09-30
Applicant: 安徽大学
IPC: G06V20/40 , G06V10/26 , G06V10/774 , G06V10/80
Abstract: 本发明公开了一种基于缺失感知提示的模态缺失RGBT跟踪方法及系统,方法包括:获取训练帧图像对并对其对打标签,包括有缺失类型和无缺失类型;有缺失类型的图像,设置对应的缺失补偿填充集;判断当前图像对中两张图像是否有缺失,当其中一张图像有缺失时,根据缺失类型从对应的缺失补偿填充集中选择对应的补充帧图像,并与另一张无缺失的图像组成图像对作为输入,若为无缺失类型时,则当前图像对直接应用作为输入;设置图像模板搜索帧边界框并对作为输入的图像对进行分割再进行维度转换,获取图像语义信息并作为建立的缺失感知提示模态融合模型的输入,使用优化算法对模型进行优化训练,并用优化后的模型获取当前帧图像对的目标包围框提高跟踪精度。
-
-
-
-
-
-
-
-
-