-
公开(公告)号:CN119006798B
公开(公告)日:2024-12-27
申请号:CN202411455746.1
申请日:2024-10-18
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
IPC: G06V10/25 , G06N3/0455 , G06N3/0464 , G06V10/74 , G06V10/82
Abstract: 本发明公开了基于上下文感知和高斯流表征的SAR图像小样本目标检测系统及方法,属于目标识别技术领域,系统包括:图像采集模块、上下文感知增强模块、流形类分布估计模块、类平衡差分聚合模块和余弦解耦模块;图像采集模块用于获取待查询SAR图像;上下文感知增强模块将最具语义信息代表的支持特征提炼为支持类原型,并得到原始查询特征;流形类分布估计模块将支持特征转换为复杂的类分布;类平衡差分聚合模块基于类分布将不同类别的原始查询特征和支持特征进行深度语义特征聚合得到聚合后查询特征;余弦解耦模块利用一个经过特征归一化、余弦相似度量和可学习缩放因子处理的分类分支处理原始查询特征和聚合后查询特征,得到目标识别结果。
-
公开(公告)号:CN117131370A
公开(公告)日:2023-11-28
申请号:CN202310775612.7
申请日:2023-06-28
Applicant: 安徽大学 , 安徽中科星联信息技术有限公司
IPC: G06F18/214 , G06F18/213 , G06N3/04 , G06V20/58 , G06N3/08
Abstract: 本发明公开了一种行人轨迹预测方法、装置、设备和存储介质,涉及计算机技术领域。本方案先确定各样本数据和各样本数据对应的未来真实轨迹,然后针对每个样本数据,通过待训练的行人轨迹预测模型,确定该样本数据对应的第一预测轨迹,再确定对应该样本数据的冗余误差,以确定该样本数据对应去除冗余误差的第二预测轨迹,最后以最小化各样本数据的第二预测轨迹与未来真实轨迹的偏差为优化目标,对待训练的行人轨迹预测模型进行训练,以通过训练后的行人轨迹预测模型进行行人轨迹预测。本方案通过消除行人轨迹预测模型引入的随机变量所带来的冗余误差,提高了模型训练的准确性,从而提高了训练后的行人轨迹预测模型预测行人轨迹的准确性。
-
公开(公告)号:CN116310837B
公开(公告)日:2024-04-23
申请号:CN202310377271.8
申请日:2023-04-11
Applicant: 安徽大学
IPC: G06V20/10 , G06V10/40 , G06V10/764 , G06V10/774 , G06V10/82 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种SAR舰船目标旋转检测方法及系统,涉及SAR图像技术领域,包括以下步骤:提取SAR图像中的待检测目标的浅层特征、深层特征;构建FAM模块并利用其将所提取的浅层特征、深层特征通过语义流的方式进行特征对准相加,构建特征图;利用高斯分布法将特征图中的锚框匹配给SAR图像中的真值框,得到旋转目标;构建的自适应边界增强模块获取旋转目标中的边界增强特征;对边界增强特征进行解耦处理后,利用全连接层预测分类目标,并利用卷积层预测SAR图像中的目标的中心点坐标、长度、角度,实现对SAR图像中的目标进行回归检测。本发明解决了SAR船舶目标检测中小目标、多尺度,以及任意方向造成检测性能较差的问题。
-
公开(公告)号:CN119006930B
公开(公告)日:2025-02-11
申请号:CN202411455790.2
申请日:2024-10-18
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
IPC: G06V10/764 , G06N3/0464 , G06N3/0895 , G06V10/25 , G06V10/40 , G06V10/82 , G06V20/60
Abstract: 本发明公开了一种长尾分布细粒度飞机识别方法,包括:设计动态特征幻觉模块,基于动态特征幻觉模块合成幻觉样本来引入额外的数据方差,增强特征空间中尾部类别的表示,得到长尾分布尾部类别样本数据;设计对比学习模块,基于对比学习模块通过最大化类间距离和最小化类内距离提取长尾分布尾部类别样本数据的判别特征,根据判别特征对遥感图像中飞机目标的细粒度目标进行检测,获得检测结果。本发明通过动态特征幻觉模块合成幻觉样本来引入额外的数据方差,增强了特征空间中尾部类别的表示,通过最大化类间距离和最小化类内距离来提取判别特征,实现了对飞机的准确识别。
-
公开(公告)号:CN119006930A
公开(公告)日:2024-11-22
申请号:CN202411455790.2
申请日:2024-10-18
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
IPC: G06V10/764 , G06N3/0464 , G06N3/0895 , G06V10/25 , G06V10/40 , G06V10/82 , G06V20/60
Abstract: 本发明公开了一种长尾分布细粒度飞机识别方法,包括:设计动态特征幻觉模块,基于动态特征幻觉模块合成幻觉样本来引入额外的数据方差,增强特征空间中尾部类别的表示,得到长尾分布尾部类别样本数据;设计对比学习模块,基于对比学习模块通过最大化类间距离和最小化类内距离提取长尾分布尾部类别样本数据的判别特征,根据判别特征对遥感图像中飞机目标的细粒度目标进行检测,获得检测结果。本发明通过动态特征幻觉模块合成幻觉样本来引入额外的数据方差,增强了特征空间中尾部类别的表示,通过最大化类间距离和最小化类内距离来提取判别特征,实现了对飞机的准确识别。
-
公开(公告)号:CN119006798A
公开(公告)日:2024-11-22
申请号:CN202411455746.1
申请日:2024-10-18
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
IPC: G06V10/25 , G06N3/0455 , G06N3/0464 , G06V10/74 , G06V10/82
Abstract: 本发明公开了基于上下文感知和高斯流表征的SAR图像小样本目标检测系统及方法,属于目标识别技术领域,系统包括:图像采集模块、上下文感知增强模块、流形类分布估计模块、类平衡差分聚合模块和余弦解耦模块;图像采集模块用于获取待查询SAR图像;上下文感知增强模块将最具语义信息代表的支持特征提炼为支持类原型,并得到原始查询特征;流形类分布估计模块将支持特征转换为复杂的类分布;类平衡差分聚合模块基于类分布将不同类别的原始查询特征和支持特征进行深度语义特征聚合得到聚合后查询特征;余弦解耦模块利用一个经过特征归一化、余弦相似度量和可学习缩放因子处理的分类分支处理原始查询特征和聚合后查询特征,得到目标识别结果。
-
公开(公告)号:CN118941973A
公开(公告)日:2024-11-12
申请号:CN202411434113.2
申请日:2024-10-15
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
Abstract: 本发明公开了基于多任务强化学习自动剪枝方法的SAR舰船目标检测方法及系统,涉及SAR舰船目标检测领域,其中方法包括:采集包含待检测目标舰船的SAR图像;设计多任务强化学习自动剪枝方法;基于多任务强化学习自动剪枝方法,改进传统SAR舰船目标检测模型,得到最终模型;利用最终模型对SAR图像进行检测,识别其中的舰船。本发明通过多任务强化学习自动剪枝方法优化SAR舰船目标检测,有效减少模型参数量和计算量,同时保持高检测精度,增强模型在边缘设备上的应用能力。
-
公开(公告)号:CN116310837A
公开(公告)日:2023-06-23
申请号:CN202310377271.8
申请日:2023-04-11
Applicant: 安徽大学
IPC: G06V20/10 , G06V10/40 , G06V10/764 , G06V10/774 , G06V10/82 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种SAR舰船目标旋转检测方法及系统,涉及SAR图像技术领域,包括以下步骤:提取SAR图像中的待检测目标的浅层特征、深层特征;构建FAM模块并利用其将所提取的浅层特征、深层特征通过语义流的方式进行特征对准相加,构建特征图;利用高斯分布法将特征图中的锚框匹配给SAR图像中的真值框,得到旋转目标;构建的自适应边界增强模块获取旋转目标中的边界增强特征;对边界增强特征进行解耦处理后,利用全连接层预测分类目标,并利用卷积层预测SAR图像中的目标的中心点坐标、长度、角度,实现对SAR图像中的目标进行回归检测。本发明解决了SAR船舶目标检测中小目标、多尺度,以及任意方向造成检测性能较差的问题。
-
公开(公告)号:CN118941973B
公开(公告)日:2024-12-13
申请号:CN202411434113.2
申请日:2024-10-15
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
Abstract: 本发明公开了基于多任务强化学习自动剪枝方法的SAR舰船目标检测方法及系统,涉及SAR舰船目标检测领域,其中方法包括:采集包含待检测目标舰船的SAR图像;设计多任务强化学习自动剪枝方法;基于多任务强化学习自动剪枝方法,改进传统SAR舰船目标检测模型,得到最终模型;利用最终模型对SAR图像进行检测,识别其中的舰船。本发明通过多任务强化学习自动剪枝方法优化SAR舰船目标检测,有效减少模型参数量和计算量,同时保持高检测精度,增强模型在边缘设备上的应用能力。
-
-
-
-
-
-
-
-