-
公开(公告)号:CN117115170B
公开(公告)日:2024-01-12
申请号:CN202311385351.4
申请日:2023-10-25
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
IPC: G06T7/00 , G06N3/088 , G06V10/774 , G06V10/80 , G06V10/82
Abstract: 本发明公开了一种无监督域自适应SAR舰船检测方法及系统,包括以下步骤:获取光学舰船图像和SAR舰船图像;构建UDA‑SARDet模型;将所述光学舰船图像和所述SAR舰船图像作为所述UDA‑SARDet模型的输入数据进行训练与测试;利用通过测试的所述UDA‑SARDet模型完成对SAR图像舰船检测。本发明使用未标注的SAR舰船图像和现有的已标注的光学数据集,高效完成SAR图像的舰船检测任务。同时设计全新的网络模型结构和IoU损失函数,解决了SAR图像舰船目标多尺度、特征少、信息容易丢失等问题,提升了模型的检测性能。
-
公开(公告)号:CN116310837B
公开(公告)日:2024-04-23
申请号:CN202310377271.8
申请日:2023-04-11
Applicant: 安徽大学
IPC: G06V20/10 , G06V10/40 , G06V10/764 , G06V10/774 , G06V10/82 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种SAR舰船目标旋转检测方法及系统,涉及SAR图像技术领域,包括以下步骤:提取SAR图像中的待检测目标的浅层特征、深层特征;构建FAM模块并利用其将所提取的浅层特征、深层特征通过语义流的方式进行特征对准相加,构建特征图;利用高斯分布法将特征图中的锚框匹配给SAR图像中的真值框,得到旋转目标;构建的自适应边界增强模块获取旋转目标中的边界增强特征;对边界增强特征进行解耦处理后,利用全连接层预测分类目标,并利用卷积层预测SAR图像中的目标的中心点坐标、长度、角度,实现对SAR图像中的目标进行回归检测。本发明解决了SAR船舶目标检测中小目标、多尺度,以及任意方向造成检测性能较差的问题。
-
公开(公告)号:CN116310837A
公开(公告)日:2023-06-23
申请号:CN202310377271.8
申请日:2023-04-11
Applicant: 安徽大学
IPC: G06V20/10 , G06V10/40 , G06V10/764 , G06V10/774 , G06V10/82 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种SAR舰船目标旋转检测方法及系统,涉及SAR图像技术领域,包括以下步骤:提取SAR图像中的待检测目标的浅层特征、深层特征;构建FAM模块并利用其将所提取的浅层特征、深层特征通过语义流的方式进行特征对准相加,构建特征图;利用高斯分布法将特征图中的锚框匹配给SAR图像中的真值框,得到旋转目标;构建的自适应边界增强模块获取旋转目标中的边界增强特征;对边界增强特征进行解耦处理后,利用全连接层预测分类目标,并利用卷积层预测SAR图像中的目标的中心点坐标、长度、角度,实现对SAR图像中的目标进行回归检测。本发明解决了SAR船舶目标检测中小目标、多尺度,以及任意方向造成检测性能较差的问题。
-
公开(公告)号:CN117115170A
公开(公告)日:2023-11-24
申请号:CN202311385351.4
申请日:2023-10-25
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
IPC: G06T7/00 , G06N3/088 , G06V10/774 , G06V10/80 , G06V10/82
Abstract: 本发明公开了一种无监督域自适应SAR舰船检测方法及系统,包括以下步骤:获取光学舰船图像和SAR舰船图像;构建UDA‑SARDet模型;将所述光学舰船图像和所述SAR舰船图像作为所述UDA‑SARDet模型的输入数据进行训练与测试;利用通过测试的所述UDA‑SARDet模型完成对SAR图像舰船检测。本发明使用未标注的SAR舰船图像和现有的已标注的光学数据集,高效完成SAR图像的舰船检测任务。同时设计全新的网络模型结构和IoU损失函数,解决了SAR图像舰船目标多尺度、特征少、信息容易丢失等问题,提升了模型的检测性能。
-
-
-