一种基于学习状态增强的知识追踪方法

    公开(公告)号:CN118379168A

    公开(公告)日:2024-07-23

    申请号:CN202410589445.1

    申请日:2024-05-13

    Applicant: 安徽大学

    Abstract: 本发明公开了一种基于学习状态增强的知识追踪方法,包括:1、基于项目反应理论,建模习题嵌入来模拟习题之间的真实差异;2、设计学习状态增强的知识状态提取网络架构,通过学习状态的引导,得到更细致的学生知识状态;3、根据学生的知识状态与学习状态共同决定其下一时刻的表现预测。本发明通过关注习题间存在的细微差异与在学习过程中学生状态的变化来模拟更真实的知识获取过程,在提高知识追踪精度的同时保留了一定的可解释性。

    一种基于自监督图学习的认知诊断方法及其应用

    公开(公告)号:CN115618939A

    公开(公告)日:2023-01-17

    申请号:CN202211246960.7

    申请日:2022-10-12

    Applicant: 安徽大学

    Abstract: 本发明公开了一种基于自监督图学习的认知诊断方法及其应用,该方法包括:1、依据学生与习题的交互记录,习题与知识概念之间的关联关系,构建认知诊断关系图,2、构建包含嵌入层、GCN网络、诊断层、预测层的诊断网络,3、使用诊断网络对学生回答习题的正确率进行预测,使用预测结果构建交叉熵损失,4、使用基于边重要性的边删除方法为关系图随机生成两个不同的稀疏视图,计算节点在不同稀疏视图上的特征,并构建自监督损失,5、使用交叉熵损失优化整个诊断网络,使用自监督损失优化GCN网络。本发明能在训练诊断网络的过程中关注到数据稀疏的学生,从而能提高诊断网络的总体诊断水平。

    一种基于习题不确定性关系的知识追踪方法

    公开(公告)号:CN118709757A

    公开(公告)日:2024-09-27

    申请号:CN202410712941.1

    申请日:2024-06-04

    Applicant: 安徽大学

    Abstract: 本发明公开了一种基于习题不确定性关系的知识追踪方法,包括:1、将习题之间的关系建模为高斯分布;2、通过采样不确定性关系分布,利用不确定性关系得到学生对于未来题目的掌握程度用来预测未来表现;3、使用信息熵对习题不确定关系进行量化,并使用量化的不确定性对模型加权;4、通过不确定性关系训练两个模型,分别是确定模型和不确定模型,联合两个模型做出最终预测。本发明针对知识追踪任务中习题之间的不确定关系进行建模,并对其进行量化,通过量化结果改善模型训练与推理,提高了模型的预测性能。

    一种基于多视图挖掘不变信息的领域泛化图像识别方法

    公开(公告)号:CN118657981A

    公开(公告)日:2024-09-17

    申请号:CN202410681090.9

    申请日:2024-05-29

    Applicant: 安徽大学

    Abstract: 本发明公开了一种基于多视图挖掘不变信息的领域泛化图像识别方法,包括:1、定义具有c个类别的领域泛化图像数据集;2、构建基于多视图挖掘不变信息的领域泛化网络模型;3、使用多视图对抗挖掘策略和困难样本加权策略训练构建的网络模型;4、构建两阶段的损失函数优化模型权重参数,得到最优的目标域图像分类模型。本发明通过探索图像特征的不同视图来挖掘丰富的判别性信息,然后自适应的计算样本权重以增加对困难样本的关注度,从而能实现对目标域图像类别的精准识别。

Patent Agency Ranking