-
公开(公告)号:CN114202696A
公开(公告)日:2022-03-18
申请号:CN202111534166.8
申请日:2021-12-15
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
Abstract: 本发明提供了一种基于上下文视觉的SAR目标检测方法、装置和存储介质,属于目标检测领域,包括:获取SAR图像;将SAR图像输入目标检测模型中,目标检测模型对SAR图像中的目标物进行定位和识别,获得检测结果。本发明通过从上到下和从下到上的注意力增强双向多尺度连接操作,以指导动态注意力矩阵的学习,增强不同分辨率下的特征交互,促使模型能够更为精准的提取多尺度的目标特征信息,回归检测框和分类,抑制干扰背景信息,从而增强了视觉表示能力。在增加注意力增强模块的情况下,整个Neck几乎不增加参数量和计算量也能使检测性能得到极强的增益。
-
公开(公告)号:CN114119582A
公开(公告)日:2022-03-01
申请号:CN202111455414.X
申请日:2021-12-01
Applicant: 安徽大学 , 安徽中科星联信息技术有限公司
Abstract: 本发明公开了一种合成孔径雷达图像目标检测方法,涉及目标检测技术领域,采用无锚框目标检测算法YOLOX作为基本框架,从轻量级的角度重构了特征提取骨干网络,将MobilenetV2中的深度可分离卷积替换成1个普通卷积和一个深度可分离卷积。特征图经过普通卷积通道数降为原来的一半,深度可分离卷积进一步提取普通卷积输入的特征,最后两者相拼接。此外通过设置注意增强CSEMPAN模块,采用整合通道和空间注意机制来突出SAR目标独特的强散射特性。并针对SAR目标的多尺度和强稀疏特性,设计不同扩张率的卷积增强接受域,使用ESPHead提高模型从不同尺度目标中提取重要信息的能力,进一步提高检测性能。
-
公开(公告)号:CN115240078B
公开(公告)日:2024-05-07
申请号:CN202210723547.9
申请日:2022-06-24
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
IPC: G06V20/13 , G06V10/764 , G06V10/77 , G06V10/774 , G06V10/82 , G06N3/0455 , G06N3/0495 , G06N3/0985
Abstract: 本发明提供一种基于轻量化元学习的SAR图像小样本目标检测方法,包括:构建轻量化元特征提取器模块,根据轻量化元特征提取器模块,从输入的待查询SAR图像中提取出三个不同尺度的查询元特征;将带有标签的新类目标样本的支持图像输入到重加权模块中,输出三组与查询图像对应的重加权向量;构建基于transformer编码器的元特征聚合模块;将查询元特征和重加权向量通过元特征聚合模块重新校准;通过三个预测层分别对校准后的查询元特征和重加权向量进行预测,获得新类目标预测结果。本方法能在SAR图像目标新类仅有少量标注数据的情况下,达到更优的目标检测效能。
-
公开(公告)号:CN115546555A
公开(公告)日:2022-12-30
申请号:CN202211274361.6
申请日:2022-10-18
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
IPC: G06V10/764 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 本发明提供一种基于混合表征学习增强的轻量化SAR目标检测方法,属于SAR图像目标检测技术领域,包括以下步骤:构建用于SAR图像舰船目标识别的HRLE‑SARDet网络模型;将待检测的舰船目标的SAR图像数据输入至训练后的HRLE‑SARDet网络模型中,输出获得目标检测结果。本发明提出了一种基于混合表征学习增强的轻量化SAR目标检测算法HRLE‑SARDet,从更加均衡的角度解决SAR图像舰船目标检测的问题,在大大减小参数量和计算量的同时,检测精度也得到一定保证和提升。
-
公开(公告)号:CN115240078A
公开(公告)日:2022-10-25
申请号:CN202210723547.9
申请日:2022-06-24
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
IPC: G06V20/13 , G06V10/764 , G06V10/77 , G06V10/774 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 本发明提供一种基于轻量化元学习的SAR图像小样本目标检测方法,包括:构建轻量化元特征提取器模块,根据轻量化元特征提取器模块,从输入的待查询SAR图像中提取出三个不同尺度的查询元特征;将带有标签的新类目标样本的支持图像输入到重加权模块中,输出三组与查询图像对应的重加权向量;构建基于transformer编码器的元特征聚合模块;将查询元特征和重加权向量通过元特征聚合模块重新校准;通过三个预测层分别对校准后的查询元特征和重加权向量进行预测,获得新类目标预测结果。本方法能在SAR图像目标新类仅有少量标注数据的情况下,达到更优的目标检测效能。
-
公开(公告)号:CN115546555B
公开(公告)日:2024-05-03
申请号:CN202211274361.6
申请日:2022-10-18
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
IPC: G06V10/764 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/048 , G06N3/084
Abstract: 本发明提供一种基于混合表征学习增强的轻量化SAR目标检测方法,属于SAR图像目标检测技术领域,包括以下步骤:构建用于SAR图像舰船目标识别的HRLE‑SARDet网络模型;将待检测的舰船目标的SAR图像数据输入至训练后的HRLE‑SARDet网络模型中,输出获得目标检测结果。本发明提出了一种基于混合表征学习增强的轻量化SAR目标检测算法HRLE‑SARDet,从更加均衡的角度解决SAR图像舰船目标检测的问题,在大大减小参数量和计算量的同时,检测精度也得到一定保证和提升。
-
公开(公告)号:CN114119582B
公开(公告)日:2024-04-26
申请号:CN202111455414.X
申请日:2021-12-01
Applicant: 安徽大学 , 安徽中科星联信息技术有限公司
IPC: G06T7/00 , G06V10/40 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种合成孔径雷达图像目标检测方法,涉及目标检测技术领域,采用无锚框目标检测算法YOLOX作为基本框架,从轻量级的角度重构了特征提取骨干网络,将MobilenetV2中的深度可分离卷积替换成1个普通卷积和一个深度可分离卷积。特征图经过普通卷积通道数降为原来的一半,深度可分离卷积进一步提取普通卷积输入的特征,最后两者相拼接。此外通过设置注意增强CSEMPAN模块,采用整合通道和空间注意机制来突出SAR目标独特的强散射特性。并针对SAR目标的多尺度和强稀疏特性,设计不同扩张率的卷积增强接受域,使用ESPHead提高模型从不同尺度目标中提取重要信息的能力,进一步提高检测性能。
-
公开(公告)号:CN114202696B
公开(公告)日:2023-01-24
申请号:CN202111534166.8
申请日:2021-12-15
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
IPC: G06V20/10 , G06N3/0464 , G06N3/08 , G06V10/40
Abstract: 本发明提供了一种基于上下文视觉的SAR目标检测方法、装置和存储介质,属于目标检测领域,包括:获取SAR图像;将SAR图像输入目标检测模型中,目标检测模型对SAR图像中的目标物进行定位和识别,获得检测结果。本发明通过从上到下和从下到上的注意力增强双向多尺度连接操作,以指导动态注意力矩阵的学习,增强不同分辨率下的特征交互,促使模型能够更为精准的提取多尺度的目标特征信息,回归检测框和分类,抑制干扰背景信息,从而增强了视觉表示能力。在增加注意力增强模块的情况下,整个Neck几乎不增加参数量和计算量也能使检测性能得到极强的增益。
-
公开(公告)号:CN117557902A
公开(公告)日:2024-02-13
申请号:CN202311495712.0
申请日:2023-11-10
Applicant: 安徽大学
Abstract: 本发明公开一种基于SAR目标检测器的图像检测方法,涉及雷达遥感图像应用技术领域,包括:采集待检测目标的图像数据,将SAR目标检测器的网络结构每一层拆分为输入层和输出层,根据输入层与输出层对应的关系,获取网络结构中各个层之间的依赖关系,进而建立依赖模型;依据依赖模型,以相邻层之间依赖关系的递推方式将两两耦合的网络结构分成一组;通过APRS方法来自动化搜索每一组网络结构的剪枝率,以此对同一组的网络结构相同的通道进行剪枝,将待检测目标的图像数据输入至经过剪枝后的SAR目标检测器中,获得检测图像;本发明可作为通用的端到端SAR目标检测器自动化剪枝框架,适用于任意的深度学习目标检测网络。
-
-
-
-
-
-
-
-