-
公开(公告)号:CN119417743A
公开(公告)日:2025-02-11
申请号:CN202510013130.7
申请日:2025-01-06
Applicant: 安徽大学
Abstract: 本发明涉及一种多尺度表征光学影像低频定位误差自适应补偿方法,与现有技术相比实现了从时间、组成等维度考虑对低频误差解耦表征,适应构建低频误差补偿模型。本发明包括以下步骤:多尺度表征光学影像低频定位误差自适应补偿准备工作;对光学影像低频定位误差进行多时间尺度表征;考虑动态、静态误差解耦的光学影像低频定位误差模型自适应构建;利用非共线控制点对补偿模型进行偏最小二乘求解与补偿参数应用。本发明采用变分模态分解方法将低频误差表征成周期项、趋势项以及噪声项,根据其组份间量级大小关系,自适应构建低频误差补偿模型。
-
公开(公告)号:CN119006930B
公开(公告)日:2025-02-11
申请号:CN202411455790.2
申请日:2024-10-18
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
IPC: G06V10/764 , G06N3/0464 , G06N3/0895 , G06V10/25 , G06V10/40 , G06V10/82 , G06V20/60
Abstract: 本发明公开了一种长尾分布细粒度飞机识别方法,包括:设计动态特征幻觉模块,基于动态特征幻觉模块合成幻觉样本来引入额外的数据方差,增强特征空间中尾部类别的表示,得到长尾分布尾部类别样本数据;设计对比学习模块,基于对比学习模块通过最大化类间距离和最小化类内距离提取长尾分布尾部类别样本数据的判别特征,根据判别特征对遥感图像中飞机目标的细粒度目标进行检测,获得检测结果。本发明通过动态特征幻觉模块合成幻觉样本来引入额外的数据方差,增强了特征空间中尾部类别的表示,通过最大化类间距离和最小化类内距离来提取判别特征,实现了对飞机的准确识别。
-
公开(公告)号:CN118967735A
公开(公告)日:2024-11-15
申请号:CN202411441463.1
申请日:2024-10-16
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
Abstract: 本发明公开了一种基于视觉基础模型的SAR图像舰船分割方法及系统,涉及图像处理领域,其中方法步骤包括:采集待分割的舰船SAR图像;构建SARSAM模型,SARSAM模型包括:在基础的SAM模型上引入自适应小波软阈值模块、形态学适配器和提示器;自适应小波软阈值模块用于去除舰船SAR图像中的相干光斑噪声,形态学适配器用于减小SARSAM模型的计算资源,提示器用于解决目标不平滑问题;利用SARSAM模型完成舰船SAR图像的分割。本发明通过创新性设计解决了SAM模型在SAR领域中应用时性能下降的问题,同时相较于其他SAR图像舰船分割方法表现出更优异的性能。
-
公开(公告)号:CN114565860A
公开(公告)日:2022-05-31
申请号:CN202210198708.7
申请日:2022-03-01
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
Abstract: 本发明公开了一种多维度增强学习合成孔径雷达图像目标检测方法,涉及目标检测技术领域,设计一种具有语义关系的复制粘贴进行数据增强的方法,对SAR目标样本进行语义扩充,提升样本量,降低模型过拟合,引入无锚框检测框架作为基准网络,降低模型的参数量和计算复杂度,提高推理速度;本发明提供的一种多维度增强学习合成孔径雷达图像目标检测方法,以无锚框目标检测框架CenterNet2作为基准,设计了一种特征增强轻量级骨干LWBackbone,降低模型的参数量同时有效提取SAR目标显著特征,并提出混合域注意力机制CNAM,有效抑制陆地复杂背景干扰,突出目标区域,利用感受野增强检测头模块RFEHead,设计不同空洞率卷积增强感受野,提升检测头的多尺度感知性能。
-
公开(公告)号:CN115546555B
公开(公告)日:2024-05-03
申请号:CN202211274361.6
申请日:2022-10-18
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
IPC: G06V10/764 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/048 , G06N3/084
Abstract: 本发明提供一种基于混合表征学习增强的轻量化SAR目标检测方法,属于SAR图像目标检测技术领域,包括以下步骤:构建用于SAR图像舰船目标识别的HRLE‑SARDet网络模型;将待检测的舰船目标的SAR图像数据输入至训练后的HRLE‑SARDet网络模型中,输出获得目标检测结果。本发明提出了一种基于混合表征学习增强的轻量化SAR目标检测算法HRLE‑SARDet,从更加均衡的角度解决SAR图像舰船目标检测的问题,在大大减小参数量和计算量的同时,检测精度也得到一定保证和提升。
-
公开(公告)号:CN114119582B
公开(公告)日:2024-04-26
申请号:CN202111455414.X
申请日:2021-12-01
Applicant: 安徽大学 , 安徽中科星联信息技术有限公司
IPC: G06T7/00 , G06V10/40 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种合成孔径雷达图像目标检测方法,涉及目标检测技术领域,采用无锚框目标检测算法YOLOX作为基本框架,从轻量级的角度重构了特征提取骨干网络,将MobilenetV2中的深度可分离卷积替换成1个普通卷积和一个深度可分离卷积。特征图经过普通卷积通道数降为原来的一半,深度可分离卷积进一步提取普通卷积输入的特征,最后两者相拼接。此外通过设置注意增强CSEMPAN模块,采用整合通道和空间注意机制来突出SAR目标独特的强散射特性。并针对SAR目标的多尺度和强稀疏特性,设计不同扩张率的卷积增强接受域,使用ESPHead提高模型从不同尺度目标中提取重要信息的能力,进一步提高检测性能。
-
公开(公告)号:CN114202696B
公开(公告)日:2023-01-24
申请号:CN202111534166.8
申请日:2021-12-15
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
IPC: G06V20/10 , G06N3/0464 , G06N3/08 , G06V10/40
Abstract: 本发明提供了一种基于上下文视觉的SAR目标检测方法、装置和存储介质,属于目标检测领域,包括:获取SAR图像;将SAR图像输入目标检测模型中,目标检测模型对SAR图像中的目标物进行定位和识别,获得检测结果。本发明通过从上到下和从下到上的注意力增强双向多尺度连接操作,以指导动态注意力矩阵的学习,增强不同分辨率下的特征交互,促使模型能够更为精准的提取多尺度的目标特征信息,回归检测框和分类,抑制干扰背景信息,从而增强了视觉表示能力。在增加注意力增强模块的情况下,整个Neck几乎不增加参数量和计算量也能使检测性能得到极强的增益。
-
公开(公告)号:CN114519679A
公开(公告)日:2022-05-20
申请号:CN202210158438.7
申请日:2022-02-21
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
Abstract: 本发明提供一种SAR目标图像数据智能增强方法,包括:输入待增强的SAR图像数据,确定需要生成图像的角度,对SAR图像数据进行旋转填充;构建高分辨率GAN模型,包括生成器和鉴别器;所述生成器依次包括:第一卷积层、多个密集连接的残差模块、第二卷积层、下采样层和第三卷积层;所述鉴别器包括四个序列模块;将旋转填充后的SAR图像数据输入到高分辨率GAN模型,进行重构,获得增强后的高分辨率SAR图像数据。用此智能数据增强的方法,可以扩充Mstar等一些数据量较少的SAR目标数据集,提高分类的精度。也可以用于扩充SSDD等目标检测常用的数据集,提高检测的精度。
-
公开(公告)号:CN111516700A
公开(公告)日:2020-08-11
申请号:CN202010391108.3
申请日:2020-05-11
Applicant: 安徽大学
Abstract: 本发明涉及一种驾驶员分心细粒度监测方法和系统。所述方法包括:获取驾驶员的时序数据和驾驶员分心监测模型;采用所述驾驶员分心监测模型,根据所述驾驶员的时序数据得到预测向量;根据所述预测向量确定所述驾驶员的分心状态。本发明提供的驾驶员分心细粒度监测方法和系统,通过采用基于神经架构搜索算法自动构建的驾驶员分心监测模型能够提取更为丰富的多尺度特征,表征不同分心状态之间的细微差异,进而实现对驾驶员的细粒度分心状态的精准监测。
-
公开(公告)号:CN119399218B
公开(公告)日:2025-04-08
申请号:CN202510016832.0
申请日:2025-01-06
Applicant: 安徽大学
IPC: G06T7/10 , G06T5/80 , G06V10/40 , G06V10/764 , G06V20/10
Abstract: 本发明涉及一种基于风格转换的跨场景高光谱图像分割方法。本发明包括以下步骤;构建跨场景高光谱图像分割数据集;构建多视角信息融合分割网络;构建基于风格转换的跨场景高光谱图像分割网络;训练并测试基于风格转换的跨场景高光谱图像分割网络。与现有技术相比,本发明通过跨场景高光谱图像分割网络,解决了现有高光谱分类任务中,由于不同卫星高光谱图像之间存在风格差异,导致难以将源域训练模型迁移至目标域数据集的问题。此外,本发明采用多视角信息融合分割网络以聚合高光谱图像的空谱信息,从而实现了将源域卫星数据上训练的模型有效迁移至目标域卫星数据的创新方法。
-
-
-
-
-
-
-
-
-