基于二维扫描光束的激光通信终端捕获视场快速标定方法

    公开(公告)号:CN115941035B

    公开(公告)日:2023-06-02

    申请号:CN202211554974.5

    申请日:2022-12-06

    Abstract: 本发明公开了一种基于二维扫描光束的激光通信终端捕获视场快速标定方法,S1.利用上位机将被测空间激光通信终端的工作模式设定为灰度质心方法检测模式,同时设定捕获CCD工作参数,且将各项参数配置为初始化状态;S2.开启半导体激光器发射激光光源,被测空间激光通信终端伴随开始捕获光信号;S3.通过上位机控制二维平移导轨在X轴正、负方向做平移运动;S4.通过上位机控制二维平移导轨在Y轴正、负方向上做平移运动;S5.分别根据S3中二维平移导轨在X轴移动的距离△X,S4中二维平移导轨在Y轴移动的距离△Y换算出捕获视场;本发明测试精度高、测试时间短、使用环境包容度强。

    一种无人机激光链路中的光斑位置预测算法

    公开(公告)号:CN116027346A

    公开(公告)日:2023-04-28

    申请号:CN202211708594.2

    申请日:2022-12-29

    Abstract: 本发明公开了一种无人机激光链路中的光斑位置预测算法,包括以下步骤:步骤S1、小波分解;步骤S2、平稳化序列;步骤S3、模型定阶;步骤S4、模型参数估计:步骤S5、小波重构;步骤S6、位置预测;步骤S7、算法应用。本发明提出了一种无人机激光链路中的光斑位置预测算法,该算法能够在通信跟踪一体化的四象限探测器输出信息为0时使用预测的光斑位置代替错误的光斑位置,使PAT算法能进行连续的跟踪计算,从而提高激光终端的跟踪效果。

    一种用于卫星激光通信终端温度梯度控制的装置及方法

    公开(公告)号:CN115756012A

    公开(公告)日:2023-03-07

    申请号:CN202211523088.6

    申请日:2022-11-30

    Abstract: 本发明公开了一种用于卫星激光通信终端温度梯度控制的装置及方法,装置包括:光源、环形器、光纤耦合器、数据处理器、温度控制器,温度控制器连接的加热单元与光纤耦合器连接的光纤布拉格光栅传感器在被测点位上形成一一对应关系。同时形成了一种温度监测方法的步骤包括:光纤布拉格光栅传感器在被测点位的温度发生变化,发生变化的光信号被光纤光栅解调模块转换为电信号并发送到数据处理器;数据处理器计算出当前点位的温度,并判断是否超过了预设温度差。进而控制是否启动对应被测点位上的加热单元。本发明实现终端温度梯度控制的同时,满足轻量化和微型化需求,能够满足激光通信在航空航天领域的应用和发展。

    一种无人机激光链路中的光斑位置预测算法

    公开(公告)号:CN116027346B

    公开(公告)日:2023-07-18

    申请号:CN202211708594.2

    申请日:2022-12-29

    Abstract: 本发明公开了一种无人机激光链路中的光斑位置预测算法,包括以下步骤:步骤S1、小波分解;步骤S2、平稳化序列;步骤S3、模型定阶;步骤S4、模型参数估计:步骤S5、小波重构;步骤S6、位置预测;步骤S7、算法应用。本发明提出了一种无人机激光链路中的光斑位置预测算法,该算法能够在通信跟踪一体化的四象限探测器输出信息为0时使用预测的光斑位置代替错误的光斑位置,使PAT算法能进行连续的跟踪计算,从而提高激光终端的跟踪效果。

    基于二维扫描光束的激光通信终端捕获视场快速标定方法

    公开(公告)号:CN115941035A

    公开(公告)日:2023-04-07

    申请号:CN202211554974.5

    申请日:2022-12-06

    Abstract: 本发明公开了一种基于二维扫描光束的激光通信终端捕获视场快速标定方法,S1.利用上位机将被测空间激光通信终端的工作模式设定为灰度质心方法检测模式,同时设定捕获CCD工作参数,且将各项参数配置为初始化状态;S2.开启半导体激光器发射激光光源,被测空间激光通信终端伴随开始捕获光信号;S3.通过上位机控制二维平移导轨在X轴正、负方向做平移运动;S4.通过上位机控制二维平移导轨在Y轴正、负方向上做平移运动;S5.分别根据S3中二维平移导轨在X轴移动的距离△X,S4中二维平移导轨在Y轴移动的距离△Y换算出捕获视场;本发明测试精度高、测试时间短、使用环境包容度强。

    一种车架载小型化高速探地雷达抖动补偿方法及补偿系统

    公开(公告)号:CN119217920B

    公开(公告)日:2025-03-28

    申请号:CN202411764054.5

    申请日:2024-12-04

    Abstract: 本发明提供了一种车架载小型化高速探地雷达抖动补偿方法及补偿系统,涉及探地雷达探测技术领域,包括数据处理器接收倾斜姿态信息,计算车架倾斜角,补偿处理器接收车架倾斜角度,由补偿处理器对车架倾斜角度信息进行基于路况自适应噪声与角度阈值调整以及多模型切换卡尔曼滤波处理,预测下一时刻车架平台的姿态信息并更新角度阈值;同时补偿处理器依据预测的数据生成补偿运动命令并发送到机械补偿装置的位移控制器;距离补偿算法处理得到运动信息,将运动信息传递给机械补偿装置执行补偿动作。本申请利用卡尔曼滤波处理,自适应噪声与角度阈值调整机制,线性与非线性补偿切换机制进行预测更新,根据路面变化自适应调整,提高数据采集的准确性。

    一种车架载小型化高速探地雷达抖动补偿方法及补偿系统

    公开(公告)号:CN119217920A

    公开(公告)日:2024-12-31

    申请号:CN202411764054.5

    申请日:2024-12-04

    Abstract: 本发明提供了一种车架载小型化高速探地雷达抖动补偿方法及补偿系统,涉及探地雷达探测技术领域,包括数据处理器接收倾斜姿态信息,计算车架倾斜角,补偿处理器接收车架倾斜角度,由补偿处理器对车架倾斜角度信息进行基于路况自适应噪声与角度阈值调整以及多模型切换卡尔曼滤波处理,预测下一时刻车架平台的姿态信息并更新角度阈值;同时补偿处理器依据预测的数据生成补偿运动命令并发送到机械补偿装置的位移控制器;距离补偿算法处理得到运动信息,将运动信息传递给机械补偿装置执行补偿动作。本申请利用卡尔曼滤波处理,自适应噪声与角度阈值调整机制,线性与非线性补偿切换机制进行预测更新,根据路面变化自适应调整,提高数据采集的准确性。

Patent Agency Ranking