一种面向噪音职业危害的脑电波焦虑监测分析方法

    公开(公告)号:CN115644873B

    公开(公告)日:2024-09-27

    申请号:CN202211320983.8

    申请日:2022-10-26

    Applicant: 复旦大学

    Abstract: 本发明公开一种面向噪音职业危害的脑电波焦虑监测分析方法,通过对各目标监测人员对应各异常时间段的噪音分贝浮动指数、噪音影响指数和大气环境影响系数进行分析,并综合分析得到各目标监测人员对应的噪音焦虑系数,从一方面来说,避免了现有技术中对噪音监测分析的片面性,大幅度提升了各目标监测人员对应噪音焦虑系数的精准性、有效性和科学依据性;从另一方面来说,为各职业类型对应噪音焦虑系数的分析提供了有力的数据支撑,便于各职业类型人员及时进行相应的调整和休息,在很大程度上避免了各职业类型人员噪音职业病的诱发。

    基于深度学习的CTA全自动侧枝循环评分方法及系统

    公开(公告)号:CN112907563B

    公开(公告)日:2023-12-01

    申请号:CN202110286102.4

    申请日:2021-03-17

    Abstract: 本发明提供了一种基于深度学习的CTA全自动侧枝循环评分方法及系统,涉及医学图像处理技术领域,该方法包括:步骤S1:对大脑CTA图像进行掩模和归一化的预处理;步骤S2:对CTA图像进行脑区划分,获取相关解剖图谱以及功能图谱,获取加权大脑各脑区掩模图;步骤S3:对掩模与归一化后的CTA图像进行血管分割;步骤S4:基于血管分割结果量化计算评分特征;步骤S5:基于卷积神经网络测量血管壁厚度的评分特征;步骤S6:构建多标签评分分类模型,对计算得到的特征向量进行分类评分。本发明能够实现基于血流代偿途径的侧枝循环血管分级机制,并提高小血管的分割精度,还能使得评分策略具有更广泛(56)对比文件刘国玮.基于深度学习的脑部CTA图像血管分割方法研究《.中国优秀硕士学位论文全文数据库(信息科技辑)》.2020,(第03期),全文.Rahil Shahzad et.al.Fully automateddetection and segmentation ofintracranial aneurysms in subarachnoidhemorrhage on CTA using deep learning.《nature》.2020,全文.吴秋雯等.基于深度学习的计算机体层摄影血管造影颈动脉斑块分割初步研究《.上海医学》.2020,第43卷(第05期),280-283.

    面向胶质瘤多任务一体化网络的改进粒子群参数优化方法

    公开(公告)号:CN115222007A

    公开(公告)日:2022-10-21

    申请号:CN202210611738.6

    申请日:2022-05-31

    Abstract: 本发明提供了一种面向胶质瘤多任务一体化网络的改进粒子群参数优化方法,包括:步骤1:构建脑胶质瘤患者数据集:步骤2:进行数据预处理;步骤3:构建多任务学习框架;步骤4:构建多任务损失函数;步骤5:通过改进的粒子群优化算法对多任务学习框架进行优化训练,得到损失函数中两个任务的最佳权重;步骤6:在网络中载入训练集,确定网络模型的参数,得到训练好的网络模型并保存,载入训练好的网络模型,输入测试集进行预测,得到结果并根据标签计算各评价指标值。本发明使用改进的粒子群优化算法可以根据粒子适应度来调节惯性权重,实现惯性权重的自适应调整。

    一种面向噪音职业危害的脑电波焦虑监测分析方法

    公开(公告)号:CN115644873A

    公开(公告)日:2023-01-31

    申请号:CN202211320983.8

    申请日:2022-10-26

    Applicant: 复旦大学

    Abstract: 本发明公开一种面向噪音职业危害的脑电波焦虑监测分析方法,通过对各目标监测人员对应各异常时间段的噪音分贝浮动指数、噪音影响指数和大气环境影响系数进行分析,并综合分析得到各目标监测人员对应的噪音焦虑系数,从一方面来说,避免了现有技术中对噪音监测分析的片面性,大幅度提升了各目标监测人员对应噪音焦虑系数的精准性、有效性和科学依据性;从另一方面来说,为各职业类型对应噪音焦虑系数的分析提供了有力的数据支撑,便于各职业类型人员及时进行相应的调整和休息,在很大程度上避免了各职业类型人员噪音职业病的诱发。

Patent Agency Ranking