基于通道注意力机制和多层特征融合的图像超分辨率方法

    公开(公告)号:CN109886871B

    公开(公告)日:2023-04-07

    申请号:CN201910014480.X

    申请日:2019-01-07

    Abstract: 本发明涉及一种基于通道注意力机制和多层特征融合的图像超分辨率方法,在残差支路开头,使用基于深度学习的单层卷积层直接提取低分辨率图像的原始特征;使用六个级联的基于通道注意力机制和多层特征融合的卷积循环单元来提取精确的深度特征;通过反卷积层对深度特征进行上采样,并且使用单层卷积层对上采样的特征进行降维,得到高分辨率图像的残差;在映射支路,使用双三次插值方法对低分辨图像进行上采样,得到高分辨率图像的映射;将高分辨率图像的映射和残差逐像素相加得到最终的高分辨率图像。本发明设计合理,充分考虑了特征通道间的差异性,高效地利用了层次化的特征,在取得较高准确率的同时,保持了较快的运行速度。

    基于通道注意力机制和多层特征融合的图像超分辨率方法

    公开(公告)号:CN109886871A

    公开(公告)日:2019-06-14

    申请号:CN201910014480.X

    申请日:2019-01-07

    Abstract: 本发明涉及一种基于通道注意力机制和多层特征融合的图像超分辨率方法,在残差支路开头,使用基于深度学习的单层卷积层直接提取低分辨率图像的原始特征;使用六个级联的基于通道注意力机制和多层特征融合的卷积循环单元来提取精确的深度特征;通过反卷积层对深度特征进行上采样,并且使用单层卷积层对上采样的特征进行降维,得到高分辨率图像的残差;在映射支路,使用双三次插值方法对低分辨图像进行上采样,得到高分辨率图像的映射;将高分辨率图像的映射和残差逐像素相加得到最终的高分辨率图像。本发明设计合理,充分考虑了特征通道间的差异性,高效地利用了层次化的特征,在取得较高准确率的同时,保持了较快的运行速度。

    基于全局特征损失函数的行人再识别方法

    公开(公告)号:CN108960142B

    公开(公告)日:2021-04-27

    申请号:CN201810721744.0

    申请日:2018-07-04

    Abstract: 本发明涉及一种基于全局特征损失函数的行人再识别方法,将全部输入图像分成所有可能图像对,包括表示同一人的同类对和表示不同人的异类对;计算所有可能图像对之间的特征距离,从两类图像对之间的特征距离中分别统计形成全局的距离均值和方差;构建全局特征损失函数并使用该全局特征损失函数在学习过程中减小两个方差以及增大两个均值之间的差;将全局特征损失函数与分类损失函数和验证损失函数联合使用,共同增强特征的学习。本发明设计合理,充分利用了输入全体图像中相比于单张图像更为丰富的信息,使得特征的描述能力性能远远高于单纯的单张图片特征,使得系统整体匹配率大大提高。

    基于全局特征损失函数的行人再识别方法

    公开(公告)号:CN108960142A

    公开(公告)日:2018-12-07

    申请号:CN201810721744.0

    申请日:2018-07-04

    CPC classification number: G06K9/00369 G06K9/00778 G06K9/66

    Abstract: 本发明涉及一种基于全局特征损失函数的行人再识别方法,将全部输入图像分成所有可能图像对,包括表示同一人的同类对和表示不同人的异类对;计算所有可能图像对之间的特征距离,从两类图像对之间的特征距离中分别统计形成全局的距离均值和方差;构建全局特征损失函数并使用该全局特征损失函数在学习过程中减小两个方差以及增大两个均值之间的差;将全局特征损失函数与分类损失函数和验证损失函数联合使用,共同增强特征的学习。本发明设计合理,充分利用了输入全体图像中相比于单张图像更为丰富的信息,使得特征的描述能力性能远远高于单纯的单张图片特征,使得系统整体匹配率大大提高。

    基于蚁群的压缩域显著性检测算法

    公开(公告)号:CN105472380A

    公开(公告)日:2016-04-06

    申请号:CN201510799512.3

    申请日:2015-11-19

    Abstract: 本发明属于视频显著性检测领域,具体地说,涉及基于蚁群的压缩于显著性检测算法,其技术特点是:将视频帧划分为块并建模成一个图;从压缩码流中提取每个节点的时域和空域特征,构建时空域启发矩阵;使用蚁群算法,根据时空域启发矩阵分别获得时空域显著性图;根据人眼视觉特性和时空域显著性图的特征,自适应融合时域和空域显著性图像,得到图像显著区域。本发明设计合理,其利用蚁群算法的正反馈机制和贪婪启发搜索机制,在寻找全局最优解上更有优势,时空域信息结合更符合人眼视觉规律,自适应融合方式使得最终检测效果更加符合人眼主观感知质量。同时,本发明不依赖于视频内容变化以及编码时参数设置的影响,具有良好的鲁棒性以及可扩展性。

    基于注意力机制和多层次特征融合的低照度图像增强方法

    公开(公告)号:CN110210608B

    公开(公告)日:2021-03-26

    申请号:CN201910483957.9

    申请日:2019-06-05

    Abstract: 本发明涉及一种基于注意力机制和多层次特征融合的低照度图像增强方法,包括以下步骤:在输入端对低照度图像进行处理,输出四通道特征图;使用基于注意力机制的卷积层作为特征提取模块,用于提取基础特征作为低层特征;将低层特征与相应的高层特征和卷积层最深层次的特征融合,经过反卷积层后,获得最终特征图;输出映射将最终的特征图还原成RGB图片。本发明充分利用了深度卷积神经网络模型的多层次特征,将不同层次特征融合,并通过通道注意力机制,给予特征通道不同的权重,获得了更优的特征表示,提高了图像处理的准确率,获取了高质量图像,可广泛用于计算机低层次视觉任务技术领域。

Patent Agency Ranking