基于多区域特征提取和融合的行人再识别方法

    公开(公告)号:CN108960140B

    公开(公告)日:2021-04-27

    申请号:CN201810721690.8

    申请日:2018-07-04

    Abstract: 本发明涉及一种基于多区域特征提取和融合的行人再识别方法,利用残差网络提取全局特征,并在训练阶段增加一个用于全局特征提取和优化的行人身份分类模块;构造用于局部特征提取的多区域特征提取子网络,并将各局部特征进行加权融合;设置包括分类模块损失和特征融合模块损失的损失函数;对网络进行训练,得到模型提取查询集和测试集的特征向量;在度量阶段,利用交叉近邻方法对特征距离进行重新度量。本发明设计合理,有效结合了全局特征和局部特征,在距离度量方法上进行优化,获得了很好的行人再识别结果,使得系统整体匹配准确率大大提升。

    基于梯度幅值相似性的色调映射图像质量评价方法

    公开(公告)号:CN105491371A

    公开(公告)日:2016-04-13

    申请号:CN201510800435.9

    申请日:2015-11-19

    Abstract: 本发明提出了一种基于梯度幅值相似性的色调映射图像质量评价方法,属于图像处理领域。本发明提出的方法包括步骤:1)计算高动态图像和色调映射器转换之后的色调映射图像的梯度图;2)对高动态图像和色调映射图像所对应的梯度图进行基于人类视觉系统的动态范围调整;3)计算梯度图对之间的相似性,并以色调映射幅值大小作为权值;4)利用对比度、亮度和细节表述计算色调映射图像的自然性值;5)将相似性值和自然性值进行合并。本发明设计合理,其采用能够有效捕捉到图像失真的梯度幅度相似性特征,并且结合了图像的自然性特征(图像看起来必须自然)能够有效地对色调映射图像的质量进行评价,提高了评价性能。

    基于属性特征和加权的分块特征相融合的行人再识别方法

    公开(公告)号:CN109635636A

    公开(公告)日:2019-04-16

    申请号:CN201811273875.3

    申请日:2018-10-30

    CPC classification number: G06K9/00362 G06K9/629

    Abstract: 本发明涉及一种基于属性特征和加权的分块特征相融合的行人再识别方法,包括以下步骤:构造属性特征提取子网络,该子网络融合了手动提取的特征和深度神经网络提取的特征;采用设置加权的交叉熵损失函数来训练属性特征提取子网络;构造基于分块的特征提取子网络,该网络可融合多个分块的深度特征;训练基于分块的特征提取子网络,设置局部损失函数的加权融合层,自主学习不同的权重,进而赋予各局部损失函数;对整体网络进行训练,提取融合了属性特征和基于分块的深度特征的行人特征表示。本发明设计合理,其有效结合了属性特征和深度特征,在损失函数计算方法上进行优化,获得了很好的行人再识别结果,使得系统整体匹配准确率大大提升。

Patent Agency Ranking