-
公开(公告)号:CN108960140B
公开(公告)日:2021-04-27
申请号:CN201810721690.8
申请日:2018-07-04
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
Abstract: 本发明涉及一种基于多区域特征提取和融合的行人再识别方法,利用残差网络提取全局特征,并在训练阶段增加一个用于全局特征提取和优化的行人身份分类模块;构造用于局部特征提取的多区域特征提取子网络,并将各局部特征进行加权融合;设置包括分类模块损失和特征融合模块损失的损失函数;对网络进行训练,得到模型提取查询集和测试集的特征向量;在度量阶段,利用交叉近邻方法对特征距离进行重新度量。本发明设计合理,有效结合了全局特征和局部特征,在距离度量方法上进行优化,获得了很好的行人再识别结果,使得系统整体匹配准确率大大提升。
-
公开(公告)号:CN109614853A
公开(公告)日:2019-04-12
申请号:CN201811273872.X
申请日:2018-10-30
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
Abstract: 本发明涉及一种基于身体结构划分的双线性行人再识别网络构建方法,包括以下步骤:对原始行人图像进行身体结构分块得到多个结构子框,将多个子框组合成新的行人图像,构造结构框预测子网络;设置加权的局部损失函数来训练该结构框预测子网络;构造两个子网络,分别以原始行人图像和重组后行人图像作为输入,对应地提取全局行人特征和局部行人特征;设置双线性融合层,并将其作为全局特征和局部特征的融合层,得到最终的行人特征表示;对整体网络进行训练,得到基于身体结构划分的双线性行人再识别模型。本发明结合整体特征和局部特征,充分利用了身体结构信息,通过双线性融合方法获得更具判别力的行人特征,使得系统整体匹配准确率大大提升。
-
公开(公告)号:CN109635636B
公开(公告)日:2023-05-09
申请号:CN201811273875.3
申请日:2018-10-30
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
IPC: G06V40/10 , G06V10/80 , G06V10/77 , G06V10/82 , G06V10/54 , G06V10/56 , G06N3/0464 , G06N3/047 , G06N3/048 , G06N3/08
Abstract: 本发明涉及一种基于属性特征和加权的分块特征相融合的行人再识别方法,包括以下步骤:构造属性特征提取子网络,该子网络融合了手动提取的特征和深度神经网络提取的特征;采用设置加权的交叉熵损失函数来训练属性特征提取子网络;构造基于分块的特征提取子网络,该网络可融合多个分块的深度特征;训练基于分块的特征提取子网络,设置局部损失函数的加权融合层,自主学习不同的权重,进而赋予各局部损失函数;对整体网络进行训练,提取融合了属性特征和基于分块的深度特征的行人特征表示。本发明设计合理,其有效结合了属性特征和深度特征,在损失函数计算方法上进行优化,获得了很好的行人再识别结果,使得系统整体匹配准确率大大提升。
-
公开(公告)号:CN109635636A
公开(公告)日:2019-04-16
申请号:CN201811273875.3
申请日:2018-10-30
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
CPC classification number: G06K9/00362 , G06K9/629
Abstract: 本发明涉及一种基于属性特征和加权的分块特征相融合的行人再识别方法,包括以下步骤:构造属性特征提取子网络,该子网络融合了手动提取的特征和深度神经网络提取的特征;采用设置加权的交叉熵损失函数来训练属性特征提取子网络;构造基于分块的特征提取子网络,该网络可融合多个分块的深度特征;训练基于分块的特征提取子网络,设置局部损失函数的加权融合层,自主学习不同的权重,进而赋予各局部损失函数;对整体网络进行训练,提取融合了属性特征和基于分块的深度特征的行人特征表示。本发明设计合理,其有效结合了属性特征和深度特征,在损失函数计算方法上进行优化,获得了很好的行人再识别结果,使得系统整体匹配准确率大大提升。
-
公开(公告)号:CN108960140A
公开(公告)日:2018-12-07
申请号:CN201810721690.8
申请日:2018-07-04
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
CPC classification number: G06K9/00362 , G06K9/6256 , G06K9/6267 , G06N3/0454
Abstract: 本发明涉及一种基于多区域特征提取和融合的行人再识别方法,利用残差网络提取全局特征,并在训练阶段增加一个用于全局特征提取和优化的行人身份分类模块;构造用于局部特征提取的多区域特征提取子网络,并将各局部特征进行加权融合;设置包括分类模块损失和特征融合模块损失的损失函数;对网络进行训练,得到模型提取查询集和测试集的特征向量;在度量阶段,利用交叉近邻方法对特征距离进行重新度量。本发明设计合理,有效结合了全局特征和局部特征,在距离度量方法上进行优化,获得了很好的行人再识别结果,使得系统整体匹配准确率大大提升。
-
公开(公告)号:CN109614853B
公开(公告)日:2023-05-05
申请号:CN201811273872.X
申请日:2018-10-30
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
IPC: G06N3/045 , G06N3/0464 , G06N3/082 , G06V10/82 , G06V40/10
Abstract: 本发明涉及一种基于身体结构划分的双线性行人再识别网络构建方法,包括以下步骤:对原始行人图像进行身体结构分块得到多个结构子框,将多个子框组合成新的行人图像,构造结构框预测子网络;设置加权的局部损失函数来训练该结构框预测子网络;构造两个子网络,分别以原始行人图像和重组后行人图像作为输入,对应地提取全局行人特征和局部行人特征;设置双线性融合层,并将其作为全局特征和局部特征的融合层,得到最终的行人特征表示;对整体网络进行训练,得到基于身体结构划分的双线性行人再识别模型。本发明结合整体特征和局部特征,充分利用了身体结构信息,通过双线性融合方法获得更具判别力的行人特征,使得系统整体匹配准确率大大提升。
-
-
-
-
-