-
公开(公告)号:CN110188835B
公开(公告)日:2021-03-16
申请号:CN201910483958.3
申请日:2019-06-05
Applicant: 国家广播电视总局广播电视科学研究院 , 北京邮电大学
Abstract: 本发明涉及一种基于生成式对抗网络模型的数据增强行人再识别方法,包括使用Mask‑RCNN图像分割算法分割出图像中行人的掩膜图像;结合掩膜图像和手工标注行人属性,训练一个端到端的改进星形生成式对抗网络,从一个摄像头下的真实行人图像生成任何数量摄像头下的假训练图像;使用训练好的改进星形生成式对抗网络生成所有真实图像对应的所有相机域的假训练图像;将真实图像和假训练图像一起送入行人再识别模型,计算行人图像间距离并完成行人再识别功能。本发明设计合理,利用生成式对抗网络生成更多的训练样本,同时生成的图像背景能够有效地表示相对应摄像头下的真实场景,有效提高行人再识别模型的鲁棒性和判决能力,有效提高了行人再识别的准确率。
-
公开(公告)号:CN110188835A
公开(公告)日:2019-08-30
申请号:CN201910483958.3
申请日:2019-06-05
Applicant: 国家广播电视总局广播电视科学研究院 , 北京邮电大学
Abstract: 本发明涉及一种基于生成式对抗网络模型的数据增强行人再识别方法,包括使用Mask-RCNN图像分割算法分割出图像中行人的掩膜图像;结合掩膜图像和手工标注行人属性,训练一个端到端的改进星形生成式对抗网络,从一个摄像头下的真实行人图像生成任何数量摄像头下的假训练图像;使用训练好的改进星形生成式对抗网络生成所有真实图像对应的所有相机域的假训练图像;将真实图像和假训练图像一起送入行人再识别模型,计算行人图像间距离并完成行人再识别功能。本发明设计合理,利用生成式对抗网络生成更多的训练样本,同时生成的图像背景能够有效地表示相对应摄像头下的真实场景,有效提高行人再识别模型的鲁棒性和判决能力,有效提高了行人再识别的准确率。
-
公开(公告)号:CN118944809A
公开(公告)日:2024-11-12
申请号:CN202410983657.8
申请日:2024-07-22
Applicant: 国家广播电视总局广播电视科学研究院 , 神经元信息技术(成都)有限公司
IPC: H04L1/00 , H04W72/232
Abstract: 本申请涉及通信技术领域,更具体地,涉及一种物理下行控制信道的盲检方法、介质、设备及程序产品,所述方法包括:配置终端设备的工作模式;其中,所述工作模式用于指示所述终端设备是否工作在广播模式;根据所述工作模式确定对应于物理下行控制信道的目标搜索空间和目标RNTI;根据所述目标搜索空间和所述目标RNTI进行物理下行控制信道的盲检。通过本申请的方法,可以针对不同的工作模式适应性地调整盲检范围,既保证了盲检的准确度,也可以避免不必要的盲检,从而最大化地减少盲检占用的计算和存储资源,减小盲检过程的延时。
-
公开(公告)号:CN109635636A
公开(公告)日:2019-04-16
申请号:CN201811273875.3
申请日:2018-10-30
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
CPC classification number: G06K9/00362 , G06K9/629
Abstract: 本发明涉及一种基于属性特征和加权的分块特征相融合的行人再识别方法,包括以下步骤:构造属性特征提取子网络,该子网络融合了手动提取的特征和深度神经网络提取的特征;采用设置加权的交叉熵损失函数来训练属性特征提取子网络;构造基于分块的特征提取子网络,该网络可融合多个分块的深度特征;训练基于分块的特征提取子网络,设置局部损失函数的加权融合层,自主学习不同的权重,进而赋予各局部损失函数;对整体网络进行训练,提取融合了属性特征和基于分块的深度特征的行人特征表示。本发明设计合理,其有效结合了属性特征和深度特征,在损失函数计算方法上进行优化,获得了很好的行人再识别结果,使得系统整体匹配准确率大大提升。
-
公开(公告)号:CN107316058A
公开(公告)日:2017-11-03
申请号:CN201710450327.2
申请日:2017-06-15
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
CPC classification number: G06K9/629 , G06K9/4604 , G06K9/6227 , G06K9/6256 , G06N3/04
Abstract: 本发明涉及一种通过提高目标分类和定位准确度改善目标检测性能的方法,其主要技术特点是:根据卷积神经网络架构提取图像特征,并选择卷积层前M层输出进行特征融合,形成多特征的特征图;在卷积层M上进行网格划分,在每个网络中预测固定数目和大小的目标候选框;将候选框映射到特征图上进行裁剪,然后将裁剪结果进行多特征连接;将上述结果通过全连接层后,通过Softmax分类算法对图像特征进行分类,并用重叠面积损失函数进行在线迭代回归定位,得到最终目标检测的结果。本发明设计合理,通过卷积神经网络提取特征,并对图像特征进行多层融合,最后使用Softmax分类算法对图像特征进行分类,并采用重叠面积损失函数进行定位,获得了良好的目标检测结果。
-
公开(公告)号:CN107886116B
公开(公告)日:2021-03-26
申请号:CN201711033084.9
申请日:2017-10-30
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
Abstract: 本发明涉及一种针对视频数据行人再识别的LOMO3D特征提取方法,其技术特点是:将视频数据中的各帧分离出来,组织成图像序列的形式,并分割为一定长度的等长序列;将每个序列水平分割为若干扁平区域,并在这些区域中进一步划分子块,作为直方图统计的最小单位;对于每个子块,统计形成纹理直方图特征和HSV色域下的颜色直方图特征;将每个水平区域中的纹理和颜色直方图特征根据最大化原则进行整合并进行拼合,得到最终的LOMO3D特征描述子。本发明设计合理,充分利用了图像序列中的时空特征和时间信息,使得特征的描述能力性能远远高于单纯的空间域特征,试验表明本发明能够使得系统整体匹配率大大提升,优于目前其他的行人再识别算法。
-
公开(公告)号:CN107886116A
公开(公告)日:2018-04-06
申请号:CN201711033084.9
申请日:2017-10-30
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
CPC classification number: G06K9/629 , G06K9/00369 , G06K9/4647 , G06K9/4652
Abstract: 本发明涉及一种针对视频数据行人再识别的LOMO3D特征提取方法,其技术特点是:将视频数据中的各帧分离出来,组织成图像序列的形式,并分割为一定长度的等长序列;将每个序列水平分割为若干扁平区域,并在这些区域中进一步划分子块,作为直方图统计的最小单位;对于每个子块,统计形成纹理直方图特征和HSV色域下的颜色直方图特征;将每个水平区域中的纹理和颜色直方图特征根据最大化原则进行整合并进行拼合,得到最终的LOMO3D特征描述子。本发明设计合理,充分利用了图像序列中的时空特征和时间信息,使得特征的描述能力性能远远高于单纯的空间域特征,试验表明本发明能够使得系统整体匹配率大大提升,优于目前其他的行人再识别算法。
-
公开(公告)号:CN109635636B
公开(公告)日:2023-05-09
申请号:CN201811273875.3
申请日:2018-10-30
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
IPC: G06V40/10 , G06V10/80 , G06V10/77 , G06V10/82 , G06V10/54 , G06V10/56 , G06N3/0464 , G06N3/047 , G06N3/048 , G06N3/08
Abstract: 本发明涉及一种基于属性特征和加权的分块特征相融合的行人再识别方法,包括以下步骤:构造属性特征提取子网络,该子网络融合了手动提取的特征和深度神经网络提取的特征;采用设置加权的交叉熵损失函数来训练属性特征提取子网络;构造基于分块的特征提取子网络,该网络可融合多个分块的深度特征;训练基于分块的特征提取子网络,设置局部损失函数的加权融合层,自主学习不同的权重,进而赋予各局部损失函数;对整体网络进行训练,提取融合了属性特征和基于分块的深度特征的行人特征表示。本发明设计合理,其有效结合了属性特征和深度特征,在损失函数计算方法上进行优化,获得了很好的行人再识别结果,使得系统整体匹配准确率大大提升。
-
公开(公告)号:CN109034210B
公开(公告)日:2021-10-12
申请号:CN201810721716.9
申请日:2018-07-04
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
Abstract: 本发明涉及一种基于超特征融合与多尺度金字塔网络的目标检测方法,包括利用深度卷积神经网络提取具有不同特征信息的分层多尺度特征图;进行超特征融合;构建新的多尺度金字塔网络;根据不同层分别构建不同大小和长宽比的目标候选框;构建一个新的用于多特征提取且能够防止梯度消失的卷积模块;利用多任务损失函数对多类别分类器和边界框回归器进行联合训练优化实现图像分类和目标定位功能。本发明利用深度卷积网络对目标的特征提取能力,考虑超特征融合方法改善特征表达能力,生成了一个新的模块防止梯度消失而且能更有效地帮助训练和提取特征,构建了用于目标检测的全卷积神经网络,提高了算法的检测精度,获得了良好的目标检测结果。
-
公开(公告)号:CN107563381A
公开(公告)日:2018-01-09
申请号:CN201710816619.3
申请日:2017-09-12
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
Abstract: 本发明设计了一种基于全卷积网络的多特征融合的目标检测方法,其主要技术特点是:搭建具有六个卷积层组的全卷积神经网络;利用卷积神经网络的前五组卷积层提取图像特征,并将其输出进行融合,形成融合特征图;对融合后的特征图进行卷积处理,直接产生固定数目的不同大小的目标边框;计算卷积神经网络生成的目标边框与真实边框之间的分类误差与定位误差,利用随机梯度下降法降低训练误差,得到最终训练模型的参数,最后进行测试得到目标检测结果。本发明利用了深度卷积网络对目标的强大的表示能力,构建了用于目标检测的全卷积神经网络,提出了新的融合特征方法,提高了算法的检测速度和精度,获得了良好的目标检测结果。
-
-
-
-
-
-
-
-
-