-
公开(公告)号:CN117095296A
公开(公告)日:2023-11-21
申请号:CN202311149193.2
申请日:2023-09-07
Applicant: 哈尔滨工程大学
IPC: G06V20/10 , G06V10/20 , G06V10/774 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种基于复合卷积神经网络的船舶舱室浸水识别方法,属于船舶浸水识别技术领域。包括以下步骤:S1、获取船舶舱室浸水图片数据,并对所述图片数据进行预处理,得到图像数据集;S2、构建复合神经网络,并基于所述图像数据集对所述复合神经网络进行训练,基于训练后的所述复合神经网络对船舶舱室图像进行进水识别,得出识别结果。本发明使用复合卷积神经网络的方法进行船舶舱室浸水识别,可以提高识别精度,增加决策者应对突发浸水事件的能力,极大程度上节省人力、防止工作人员工作疏漏导致错过堵漏救援第一时间。