-
公开(公告)号:CN117033941A
公开(公告)日:2023-11-10
申请号:CN202311056107.3
申请日:2023-08-22
Applicant: 哈尔滨工程大学 , 哈尔滨工程大学三亚南海创新发展基地 , 价值链技术(深圳)有限公司
Inventor: 王巍 , 韩子屹 , 蔡成涛 , 陆蓓婷 , 蒋文创 , 杨玉东 , 曲晓威 , 杨东梅 , 张海涛 , 王小芳 , 张万松 , 张越 , 庄园 , 苘大鹏 , 李伟 , 玄世昌 , 郭方方
Abstract: 本发明公开一种基于HMM和降噪自编码器的中文对抗样本恢复方法,涉及对抗文本处理技术领域,包括,获取对抗文本,对对抗文本进行符号清洗;基于隐马尔可夫模型将所述对抗文本中的拼音串转换为汉字序列,并将汉字序列拼接为汉字串;通过降噪自编码器对所述对抗文本中的汉字字符及汉字串进行噪声去除,得到候选词序列;通过置信度‑相似度解码器对所述候选词序列进行解码,得到修正文本;通过双向机器翻译对所述修正文本进行处理,生成恢复汉字文本。本发明能够实现中文对抗样本的高效恢复。
-
公开(公告)号:CN116543773A
公开(公告)日:2023-08-04
申请号:CN202310672371.3
申请日:2023-06-07
Applicant: 哈尔滨工程大学
Abstract: 本发明涉及一种基于自适应扩充策略的三阶段半监督声纹识别方法,包括:(1)提出构建三阶段框架的半监督学习方法;(2)提出基于自适应扩充策略的三阶段半监督声纹识别方法;(3)完成对基于自适应扩充策略的三阶段半监督声纹识别方法的训练和测试。本发明提出的一种基于自适应扩充策略的三阶段半监督声纹识别方法,能在有标签声纹数据不足时充分利用无标签声纹数据提升声纹识别性能,具有较低的等错误率,表现出一定的有效性。
-
公开(公告)号:CN116579918B
公开(公告)日:2023-12-26
申请号:CN202310567199.5
申请日:2023-05-19
Applicant: 哈尔滨工程大学
IPC: G06T3/00 , G06V10/52 , G06V10/764 , G06V10/82 , G06V10/40 , G06V10/77 , G06N3/0464 , G06N3/0499 , G06N3/048 , G06N3/0455 , G06N3/08
Abstract: 本发明涉及基于风格无关判别器的注意力机制多尺度图像转换方法,包括:构建基线的多尺度图像转换模型,在基线的多尺度图像转换模型中引入注意力机制,构建基于注意力机制的多尺度图像转换模型;基于注意力机制的多尺度图像转换模型,结合风格无关判别器,构建基于风格无关判别器的注意力机制多尺度图像转换模型;获取水下图像,将水下图像输入基于风格无关判别器的注意力机制多尺度图像转换模型中,输出转换后的水下图像,完成水下图像的转换。本发明提出的基于风格无关判别器的注意力机制多尺度图像转换方法,能生成细节更丰富的水下图像,具有很好的转换效果。
-
公开(公告)号:CN117095296A
公开(公告)日:2023-11-21
申请号:CN202311149193.2
申请日:2023-09-07
Applicant: 哈尔滨工程大学
IPC: G06V20/10 , G06V10/20 , G06V10/774 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种基于复合卷积神经网络的船舶舱室浸水识别方法,属于船舶浸水识别技术领域。包括以下步骤:S1、获取船舶舱室浸水图片数据,并对所述图片数据进行预处理,得到图像数据集;S2、构建复合神经网络,并基于所述图像数据集对所述复合神经网络进行训练,基于训练后的所述复合神经网络对船舶舱室图像进行进水识别,得出识别结果。本发明使用复合卷积神经网络的方法进行船舶舱室浸水识别,可以提高识别精度,增加决策者应对突发浸水事件的能力,极大程度上节省人力、防止工作人员工作疏漏导致错过堵漏救援第一时间。
-
公开(公告)号:CN116738565A
公开(公告)日:2023-09-12
申请号:CN202310563359.9
申请日:2023-05-18
Applicant: 哈尔滨工程大学
IPC: G06F30/15 , G06F30/27 , G06F18/214 , G06N3/045 , G06N3/0442 , G06N3/0464 , G06N3/08 , G06F119/12
Abstract: 本发明涉及卷积‑循环复合神经网络的船舶单破口浸水时间预测方法,包括:获取船舶单破口的浸水数据集,对所述浸水数据集进行处理;构建复合神经网络,所述复合神经网络包括:轻量级残差网络ResNet18和长短期记忆模型LSTM;基于所述浸水数据集训练所述复合神经网络,通过训练后的所述复合神经网络,预测所述船舶单破口的浸水时间。本发明旨在提高浸水事故发生后指挥者对浸水区域的掌握程度,方便指挥人员进行抗沉决策及人员疏散。
-
公开(公告)号:CN112488181B
公开(公告)日:2022-10-18
申请号:CN202011357084.6
申请日:2020-11-26
Applicant: 哈尔滨工程大学
Abstract: 本发明提供了一种基于MIDS‑Tree的服务故障高响应匹配方法。对多元融合数据集进行选取和去噪;进行面向特定服务故障和降级类型的标签处理,得到多元数据集;对数据集进行故障类型分类,形成多元微服务故障数据集;通过Apriori方法进行面向多类型服务故障的特征和属性提取;根据提取后的特征属性进行特征属性敏感度计算,得出最优特征属性并进行态势分析,得出服务故障特征属性的波动范围;根据态势分析以及服务故障类型信息,进行MIDS‑Tree的建立,并进行服务故障的预测,使得服务的资源利用率最大化。本发明提出的轻量级架构模型,为解决已有服务故障预测方法,存在的模型庞杂、冗余;同时该模型能够快速高响应的进行面向服务故障策略匹配,提高现有模型的响应时间。
-
公开(公告)号:CN115099264A
公开(公告)日:2022-09-23
申请号:CN202210580880.9
申请日:2022-05-26
Applicant: 哈尔滨工程大学
Abstract: 船舶零件故障诊断方法及装置、计算机和计算机储存介质,涉及深度学习领域。对于现有技术中存在的:虽然卷积神经网络具有较强的特征提取能力,但故障的损坏伴随时间也会产生变化的问题,本发明提供的技术方案为:船舶零件故障诊断方法,所述的方法包括:获得船舶设备运行状态过程中零件的振动加速度信号数据,将数据进行预处理,并针对不同故障标注故障类型,对完成标注的数据作为一维数据集,并划分为训练集和测试集;构建面向船舶零件的深度学习故障诊断模型的特征提取器;构建面向船舶零件的深度学习故障诊断模型的分类器;通过所述的特征提取器和分类器构建面向船舶零件的深度学习故障诊断模型。适用于诊断船舶零件故障。
-
公开(公告)号:CN114973061A
公开(公告)日:2022-08-30
申请号:CN202210434179.6
申请日:2022-04-24
Applicant: 哈尔滨工程大学
IPC: G06V20/40 , G06N3/04 , G06N3/08 , G06V10/774 , G06V10/82
Abstract: 本发明公开了一种基于深度学习方法的辅助抗沉决策模型生成方法及系统,属于抗沉辅助决策技术领域,其该方法包括:获取预设船舶的舱室区域标号数据和浸水实验数据包括总时间、每个舱室的灌满时间以及浸水视频;将每个舱室的浸水视频进行逐帧处理,得到多个图片以及每张图片对应的时间,并将多个图片以及每张图片对应的时间分成两个部分,第一部分将其顺序打乱,并划分为训练、测试集,第二部分以时间轴为顺序排列;将训练集输入卷积神经网络中进行训练,并将第二部分图片输入训练好的卷积神经网络中,得到向量化数据;将舱室区域标号和向量化数据输入循环神经网络中进行训练,得到辅助抗沉决策模型。该方法提高了抗沉辅助决策的速度以及合理程度。
-
公开(公告)号:CN112511474A
公开(公告)日:2021-03-16
申请号:CN202011351885.1
申请日:2020-11-26
Applicant: 哈尔滨工程大学
Abstract: 本发明是一种基于卷积神经网络和迁移学习的智能设备振动通信方法。本发明涉及物联网振动通信技术领域,本发明对智能设备的发送端进行振动信号的比特流分组调制发送;对智能设备的接收端采用信标位检测算法确定振动起点;对三轴加速度计信号进行主成分特征提取,去除信号噪声;对主成分分析特征提取后的加速度信号进行卷积神经网络解码,得到比特位组对应的符号标签;当通信环境发生改变时,进行迁移学习,提高振动信号识别准确率。本发明采用的比特流分组编码结合卷积神经网络解码的方式无需关心组内符号间干扰对传输准确率影响,能加快振动通信速率。相对于振幅调制和频率调制技术,本发明能被当前各种商业化智能设备所通用。
-
公开(公告)号:CN112488181A
公开(公告)日:2021-03-12
申请号:CN202011357084.6
申请日:2020-11-26
Applicant: 哈尔滨工程大学
Abstract: 本发明提供了一种基于MIDS‑Tree的服务故障高响应匹配方法。对多元融合数据集进行选取和去噪;进行面向特定服务故障和降级类型的标签处理,得到多元数据集;对数据集进行故障类型分类,形成多元微服务故障数据集;通过Apriori方法进行面向多类型服务故障的特征和属性提取;根据提取后的特征属性进行特征属性敏感度计算,得出最优特征属性并进行态势分析,得出服务故障特征属性的波动范围;根据态势分析以及服务故障类型信息,进行MIDS‑Tree的建立,并进行服务故障的预测,使得服务的资源利用率最大化。本发明提出的轻量级架构模型,为解决已有服务故障预测方法,存在的模型庞杂、冗余;同时该模型能够快速高响应的进行面向服务故障策略匹配,提高现有模型的响应时间。
-
-
-
-
-
-
-
-
-