一种基于自适应扩充策略的三阶段半监督声纹识别方法

    公开(公告)号:CN116543773A

    公开(公告)日:2023-08-04

    申请号:CN202310672371.3

    申请日:2023-06-07

    Abstract: 本发明涉及一种基于自适应扩充策略的三阶段半监督声纹识别方法,包括:(1)提出构建三阶段框架的半监督学习方法;(2)提出基于自适应扩充策略的三阶段半监督声纹识别方法;(3)完成对基于自适应扩充策略的三阶段半监督声纹识别方法的训练和测试。本发明提出的一种基于自适应扩充策略的三阶段半监督声纹识别方法,能在有标签声纹数据不足时充分利用无标签声纹数据提升声纹识别性能,具有较低的等错误率,表现出一定的有效性。

    一种基于MIDS-Tree的服务故障高响应匹配方法

    公开(公告)号:CN112488181B

    公开(公告)日:2022-10-18

    申请号:CN202011357084.6

    申请日:2020-11-26

    Abstract: 本发明提供了一种基于MIDS‑Tree的服务故障高响应匹配方法。对多元融合数据集进行选取和去噪;进行面向特定服务故障和降级类型的标签处理,得到多元数据集;对数据集进行故障类型分类,形成多元微服务故障数据集;通过Apriori方法进行面向多类型服务故障的特征和属性提取;根据提取后的特征属性进行特征属性敏感度计算,得出最优特征属性并进行态势分析,得出服务故障特征属性的波动范围;根据态势分析以及服务故障类型信息,进行MIDS‑Tree的建立,并进行服务故障的预测,使得服务的资源利用率最大化。本发明提出的轻量级架构模型,为解决已有服务故障预测方法,存在的模型庞杂、冗余;同时该模型能够快速高响应的进行面向服务故障策略匹配,提高现有模型的响应时间。

    船舶零件故障诊断方法及装置、计算机和计算机储存介质

    公开(公告)号:CN115099264A

    公开(公告)日:2022-09-23

    申请号:CN202210580880.9

    申请日:2022-05-26

    Abstract: 船舶零件故障诊断方法及装置、计算机和计算机储存介质,涉及深度学习领域。对于现有技术中存在的:虽然卷积神经网络具有较强的特征提取能力,但故障的损坏伴随时间也会产生变化的问题,本发明提供的技术方案为:船舶零件故障诊断方法,所述的方法包括:获得船舶设备运行状态过程中零件的振动加速度信号数据,将数据进行预处理,并针对不同故障标注故障类型,对完成标注的数据作为一维数据集,并划分为训练集和测试集;构建面向船舶零件的深度学习故障诊断模型的特征提取器;构建面向船舶零件的深度学习故障诊断模型的分类器;通过所述的特征提取器和分类器构建面向船舶零件的深度学习故障诊断模型。适用于诊断船舶零件故障。

    基于深度学习方法的辅助抗沉决策模型生成方法及系统

    公开(公告)号:CN114973061A

    公开(公告)日:2022-08-30

    申请号:CN202210434179.6

    申请日:2022-04-24

    Abstract: 本发明公开了一种基于深度学习方法的辅助抗沉决策模型生成方法及系统,属于抗沉辅助决策技术领域,其该方法包括:获取预设船舶的舱室区域标号数据和浸水实验数据包括总时间、每个舱室的灌满时间以及浸水视频;将每个舱室的浸水视频进行逐帧处理,得到多个图片以及每张图片对应的时间,并将多个图片以及每张图片对应的时间分成两个部分,第一部分将其顺序打乱,并划分为训练、测试集,第二部分以时间轴为顺序排列;将训练集输入卷积神经网络中进行训练,并将第二部分图片输入训练好的卷积神经网络中,得到向量化数据;将舱室区域标号和向量化数据输入循环神经网络中进行训练,得到辅助抗沉决策模型。该方法提高了抗沉辅助决策的速度以及合理程度。

    一种基于卷积神经网络和迁移学习的智能设备振动通信方法

    公开(公告)号:CN112511474A

    公开(公告)日:2021-03-16

    申请号:CN202011351885.1

    申请日:2020-11-26

    Abstract: 本发明是一种基于卷积神经网络和迁移学习的智能设备振动通信方法。本发明涉及物联网振动通信技术领域,本发明对智能设备的发送端进行振动信号的比特流分组调制发送;对智能设备的接收端采用信标位检测算法确定振动起点;对三轴加速度计信号进行主成分特征提取,去除信号噪声;对主成分分析特征提取后的加速度信号进行卷积神经网络解码,得到比特位组对应的符号标签;当通信环境发生改变时,进行迁移学习,提高振动信号识别准确率。本发明采用的比特流分组编码结合卷积神经网络解码的方式无需关心组内符号间干扰对传输准确率影响,能加快振动通信速率。相对于振幅调制和频率调制技术,本发明能被当前各种商业化智能设备所通用。

    一种基于MIDS-Tree的服务故障高响应匹配方法

    公开(公告)号:CN112488181A

    公开(公告)日:2021-03-12

    申请号:CN202011357084.6

    申请日:2020-11-26

    Abstract: 本发明提供了一种基于MIDS‑Tree的服务故障高响应匹配方法。对多元融合数据集进行选取和去噪;进行面向特定服务故障和降级类型的标签处理,得到多元数据集;对数据集进行故障类型分类,形成多元微服务故障数据集;通过Apriori方法进行面向多类型服务故障的特征和属性提取;根据提取后的特征属性进行特征属性敏感度计算,得出最优特征属性并进行态势分析,得出服务故障特征属性的波动范围;根据态势分析以及服务故障类型信息,进行MIDS‑Tree的建立,并进行服务故障的预测,使得服务的资源利用率最大化。本发明提出的轻量级架构模型,为解决已有服务故障预测方法,存在的模型庞杂、冗余;同时该模型能够快速高响应的进行面向服务故障策略匹配,提高现有模型的响应时间。

Patent Agency Ranking