-
公开(公告)号:CN103591965A
公开(公告)日:2014-02-19
申请号:CN201310413346.X
申请日:2013-09-12
Applicant: 哈尔滨工程大学
IPC: G01C25/00
CPC classification number: G01C25/005
Abstract: 本发明公开了一种舰载旋转式捷联惯导系统在线标定的方法,包括:建立惯性器件输出误差模型和惯导系统误差方程,研究惯性器件参数误差的可标定性并确定状态量和量测量;根据状态量维数确定cubature点的位置和权值,推导与cubature点相关的状态方程、一步状态预测和状态预测协方差阵,并引入多重时变渐消因子修正状态预测协方差阵;推导与cubature点和渐消因子相关的量测方程、自相关协方差阵、互相关协方差阵、增益矩阵、状态估计值和状态误差协方差估计值,设计出具有强跟踪性能和强鲁棒性的强跟踪容积卡尔曼滤波方法。本发明利用该滤波算法对惯性器件参数误差进行估计和进行在线标定并补偿惯性器件参数误差,有效地提高了导航精度,具有较强的参数变动的鲁棒性。
-
公开(公告)号:CN103335646A
公开(公告)日:2013-10-02
申请号:CN201310244624.3
申请日:2013-06-20
Applicant: 哈尔滨工程大学
IPC: G01C21/00
Abstract: 本发明公开了一种基于分散式增广信息滤波的多艇协同导航方法,分析多艇协同导航的系统特征,建立了协同导航的状态空间模型,包括单个艇的状态方程和观测方程以及艇之间的观测方程。为了解决在滤波过程中的计算复杂性问题,本发明采用增广信息滤波求解协同导航问题,利用分布式递增Cholesky修正算法,在状态恢复中将信息矩阵进行分解,即Y=LLT,其中L为下三角矩阵,是稀疏矩阵。利用稀疏矩阵的特点,大大降低了计算量。
-
公开(公告)号:CN103499354B
公开(公告)日:2017-01-18
申请号:CN201310449336.1
申请日:2013-09-24
Applicant: 哈尔滨工程大学
IPC: G01C25/00
Abstract: 本发明公开了一种基于内曼—皮尔逊准则的零速检测方法,该方法包括:手持掌上电脑实时接收单兵导航系统中脚步运动时传感器输出的量测信息;根据系统采样频率和数据传输速率确定窗口函数N;利用双假设检验理论将零速检测问题转化为模型化数学问题,并求得内曼—皮尔逊准则下的零速检测不等式;确定微型惯性测量单元传感器输出信号及掌上电脑接收信号的数学模型;求出微型惯性测量单元传感器输出信号的联合概率密度函数;利用未知信号元素的极大似然估计值取代零速检测不等式中未知元素得到广泛概率似然比不等式;将微型惯性测量单元输出数据代入广泛概率似然比不等式中,进而检测零速状态。本发明使检测方法问题数学化、模型化,提高了检测精度。
-
公开(公告)号:CN103499354A
公开(公告)日:2014-01-08
申请号:CN201310449336.1
申请日:2013-09-24
Applicant: 哈尔滨工程大学
IPC: G01C25/00
CPC classification number: G01C25/005
Abstract: 本发明公开了一种基于内曼—皮尔逊准则的零速检测方法,该方法包括:手持掌上电脑实时接收单兵导航系统中脚步运动时传感器输出的量测信息;根据系统采样频率和数据传输速率确定窗口函数N;利用双假设检验理论将零速检测问题转化为模型化数学问题,并求得内曼—皮尔逊准则下的零速检测不等式;确定微型惯性测量单元传感器输出信号及掌上电脑接收信号的数学模型;求出微型惯性测量单元传感器输出信号的联合概率密度函数;利用未知信号元素的极大似然估计值取代零速检测不等式中未知元素得到广泛概率似然比不等式;将微型惯性测量单元输出数据代入广泛概率似然比不等式中,进而检测零速状态。本发明使检测方法问题数学化、模型化,提高了检测精度。
-
公开(公告)号:CN103900566A
公开(公告)日:2014-07-02
申请号:CN201410080777.3
申请日:2014-03-06
Applicant: 哈尔滨工程大学
IPC: G01C21/16
CPC classification number: G01C21/16 , G01C21/203
Abstract: 本发明属于惯性导航技术领域,涉及一种可用于提高惯性导航系统的精度的消除地球自转角速度对旋转调制型捷联惯导系统精度影响的方法。本发明包括:建立一个旋转机构;获得初始捷联姿态矩阵获得初始时刻地心惯性坐标系与导航坐标系之间的方向余弦矩阵;可测量出IMU坐标系与惯性系之间的姿态角θ1、θ2和θ3;使IMU坐标系与地心惯性系重合;控制IMU绕着地心惯性坐标系的zi轴和yi轴按系统旋转方案转动;最终给出载体的导航参数信息。本发明避免在导航解算时地球自转角速度分量与器件误差耦合引起系统导航误差,从而系统精度不受地球自转角速度分量的影响。
-
公开(公告)号:CN103900566B
公开(公告)日:2016-09-14
申请号:CN201410080777.3
申请日:2014-03-06
Applicant: 哈尔滨工程大学
IPC: G01C21/16
Abstract: 本发明属于惯性导航技术领域,涉及一种可用于提高惯性导航系统的精度的消除地球自转角速度对旋转调制型捷联惯导系统精度影响的方法。本发明包括:建立一个旋转机构;获得初始捷联姿态矩阵获得初始时刻地心惯性坐标系与导航坐标系之间的方向余弦矩阵;可测量出IMU坐标系与惯性系之间的姿态角θ1、θ2和θ3;使IMU坐标系与地心惯性系重合;控制IMU绕着地心惯性坐标系的zi轴和yi轴按系统旋转方案转动;最终给出载体的导航参数信息。本发明避免在导航解算时地球自转角速度分量与器件误差耦合引起系统导航误差,从而系统精度不受地球自转角速度分量的影响。
-
公开(公告)号:CN103292811A
公开(公告)日:2013-09-11
申请号:CN201310244636.6
申请日:2013-06-20
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种虚拟旋转地理坐标系下解算速度的捷联惯性导航方法,在系统初始化完毕开始正常的导航解算工作后,首先在地理坐标系下解算姿态,然后将加速度计、陀螺输出等信息转换到建立的虚拟旋转地理坐标系下进行速度解算,最后将解算的速度信息再转换到地理坐标系下进行位置解算,从而达到将系统中各个误差源进行旋转调制,以提高系统的精度的目的。
-
-
-
-
-
-