一种融合节点属性和图结构的半监督社区发现方法

    公开(公告)号:CN110442800B

    公开(公告)日:2022-05-20

    申请号:CN201910659962.0

    申请日:2019-07-22

    Abstract: 一种融合节点属性和图结构的半监督社区发现方法,属于网络分析技术领域。包括以下步骤:1)计算m个属性的信息熵;2)计算属性相似度;3)利用Jaccard相似度计算结构相似度;4)计算属性和结构总的相似度;5)寻找K个初始社区;6)初始化初始社区矩阵;7)结合半监督方法计算出社区划分矩阵;8)计算平衡值(trade‑off)分析参数的合理取值范围9)根据trade‑off和模块度获得最优的模块度及社区发现结果。本发明通过不断调节算法中涉及的参数来得到一种合理地划分方式,并最后给出对于社区发现最优结果以及算法参数合理范围;融合属性进行社区发现,给出了属性所占比例的合理范围,社区发现模块度和紧密度得到提高。

    一种融合节点属性和图结构的半监督社区发现方法

    公开(公告)号:CN110442800A

    公开(公告)日:2019-11-12

    申请号:CN201910659962.0

    申请日:2019-07-22

    Abstract: 一种融合节点属性和图结构的半监督社区发现方法,属于网络分析技术领域。包括以下步骤:1)计算m个属性的信息熵;2)计算属性相似度;3)利用Jaccard相似度计算结构相似度;4)计算属性和结构总的相似度;5)寻找K个初始社区;6)初始化初始社区矩阵;7)结合半监督方法计算出社区划分矩阵;8)计算平衡值(trade-off)分析参数的合理取值范围9)根据trade-off和模块度获得最优的模块度及社区发现结果。本发明通过不断调节算法中涉及的参数来得到一种合理地划分方式,并最后给出对于社区发现最优结果以及算法参数合理范围;融合属性进行社区发现,给出了属性所占比例的合理范围,社区发现模块度和紧密度得到提高。

Patent Agency Ranking