-
公开(公告)号:CN106384050A
公开(公告)日:2017-02-08
申请号:CN201610821507.2
申请日:2016-09-13
Applicant: 哈尔滨工程大学
IPC: G06F21/56
CPC classification number: G06F21/566
Abstract: 本发明提供的是一种基于最大频繁子图挖掘的动态污点分析方法。包括动行为依赖图构建、最大频繁子图挖掘和行为依赖图匹配三个部分。采用邻接矩阵存储行为依赖图,其中顶点间的数据关联边用1表示,控制关联边用2表示,无相应依赖边用0表示。最大频繁子图挖掘算法即SPIN-MBDGM算法的主要思想是首先使用FFSM算法从行为依赖图集中得到频繁子树,然后通过添加候选数据关联边和控制关联边的扩展算法生成最大频繁子图。该方法的主要优点是从同一恶意代码家族所有的行为依赖图中挖掘最大公共部分,在不丢失特征信息的情况下减少特征库中行为依赖图的数量,从而提高识别速度。
-
公开(公告)号:CN106384050B
公开(公告)日:2019-01-15
申请号:CN201610821507.2
申请日:2016-09-13
Applicant: 哈尔滨工程大学
IPC: G06F21/56
Abstract: 本发明提供的是一种基于最大频繁子图挖掘的动态污点分析方法。包括动行为依赖图构建、最大频繁子图挖掘和行为依赖图匹配三个部分。采用邻接矩阵存储行为依赖图,其中顶点间的数据关联边用1表示,控制关联边用2表示,无相应依赖边用0表示。最大频繁子图挖掘算法即SPIN‑MBDGM算法的主要思想是首先使用FFSM算法从行为依赖图集中得到频繁子树,然后通过添加候选数据关联边和控制关联边的扩展算法生成最大频繁子图。该方法的主要优点是从同一恶意代码家族所有的行为依赖图中挖掘最大公共部分,在不丢失特征信息的情况下减少特征库中行为依赖图的数量,从而提高识别速度。
-