-
公开(公告)号:CN112119986B
公开(公告)日:2022-06-21
申请号:CN202011007510.3
申请日:2020-09-23
Applicant: 哈尔滨工程大学
Abstract: 本发明属于水下机器人技术领域,具体涉及一种用于海生物形状自适应无损抓取的欠驱动多指机械手。本发明针对于现有的水下机械手在抓取海参、扇贝以及海胆等海生物时抓取适应性不强,抓取海生物时抓力不可控而导致海生物容易受到损伤降低其商业价值等缺点,设计了一个舵机驱动结合腱绳‑扭簧传动结构的水下欠驱动多指机械手,将驱动施加于各个手指的腱绳,通过腱绳张紧驱动多手指机构完成弯曲抓握动作,实现对海参等海生物的周边包络,形状自适应抓取运动,完成对海生物的无损、可靠性抓取。本发明的具有抓取形状适应性好、抓取包络范围大、抓取无目标损性好、密封性能好、密封结构简单、抓取可靠性高等优点。
-
公开(公告)号:CN114035591A
公开(公告)日:2022-02-11
申请号:CN202111350358.3
申请日:2021-11-15
Applicant: 哈尔滨工程大学
IPC: G05D1/06
Abstract: 本发明属于水下机器人技术领域,具体涉及一种水下变曲率壁面运动机器人的运动切换控制方法。本发明通过利用机器人携带的激光测距仪对机器人前方的曲面进行曲率测量,然后利用视觉速度感知补偿器对多普勒速度测量进行准确度提高,接着通过基于视觉的变曲率位置点判定,分别建立平面运动控制律和曲面运动控制律,控制决策下进行控制策略的切换,从而实现机器人在平面运动到曲面运动的平稳切换控制,保证机器人在运动的切换过程中对壁面保持稳定吸附,给机器人壁面移动作业提供一个稳定的作业平台。本发明具有适应性高、灵活性好,可靠性高等优点。
-
公开(公告)号:CN112124537A
公开(公告)日:2020-12-25
申请号:CN202011009529.1
申请日:2020-09-23
Applicant: 哈尔滨工程大学
Abstract: 本发明属于水下机器人智能控制技术领域,具体涉及一种海底生物自主吸取捕捞的水下机器人智能控制方法。本发明提供了主要用于在复杂水下环境中完成对目标生物的检测识别并引导机器人作业并实现准确吸取指定目标。本发明在作业时,吸取机器人首先通过水下视觉与强化学习算法识别和跟踪作业目标,继而通过自身的位姿反馈调节和机器人的平台运动的智能控制系统推导和优化模糊规则,指导完成海底生物的自主吸取捕捞作业。本发明基于人工智能研究方面的先进成果,能够实现对目标的连续稳定跟踪和自主吸取,具有识别准确、智能程度高、捕捞效率高、作业成本低等优点,本发明实际应用于水下机器人系统设计,对于海生物的高效自主吸取捕捞具有重要意义。
-
公开(公告)号:CN112140125A
公开(公告)日:2020-12-29
申请号:CN202011009532.3
申请日:2020-09-23
Applicant: 哈尔滨工程大学
Abstract: 本发明属于水下机器人技术领域,具体涉及一种水下柔性目标抓取系统及其精确力感知方法。本发明的一种水下柔性目标抓取系统主要用于在复杂水下环境中完成对抓取力的精确感知和对作业目标的无损可靠抓取。传感器首先通过与手爪相连的弹性体与应变电桥感知形变,随后力信号经过电路系统转化为电信号经处理后传输至上位机,最后经由基于最小二乘原理的数据解耦算法进行处理,补偿水动力和摩擦后得到最终的实际抓取力大小。本发明的一种水下柔性目标抓取系统的精确力感知方法能够在水下机器人腕力传感器系统设计初期代替部分复杂高昂的水池实验,针对外载荷作用下的输出进行定性定量分析,为水下机器人抓取力感知与控制的进一步优化设计提供参考。
-
公开(公告)号:CN112140125B
公开(公告)日:2022-01-14
申请号:CN202011009532.3
申请日:2020-09-23
Applicant: 哈尔滨工程大学
Abstract: 本发明属于水下机器人技术领域,具体涉及一种水下柔性目标抓取系统及其精确力感知方法。本发明的一种水下柔性目标抓取系统主要用于在复杂水下环境中完成对抓取力的精确感知和对作业目标的无损可靠抓取。传感器首先通过与手爪相连的弹性体与应变电桥感知形变,随后力信号经过电路系统转化为电信号经处理后传输至上位机,最后经由基于最小二乘原理的数据解耦算法进行处理,补偿水动力和摩擦后得到最终的实际抓取力大小。本发明的一种水下柔性目标抓取系统的精确力感知方法能够在水下机器人腕力传感器系统设计初期代替部分复杂高昂的水池实验,针对外载荷作用下的输出进行定性定量分析,为水下机器人抓取力感知与控制的进一步优化设计提供参考。
-
公开(公告)号:CN112119986A
公开(公告)日:2020-12-25
申请号:CN202011007510.3
申请日:2020-09-23
Applicant: 哈尔滨工程大学
Abstract: 本发明属于水下机器人技术领域,具体涉及一种用于海生物形状自适应无损抓取的欠驱动多指机械手。本发明针对于现有的水下机械手在抓取海参、扇贝以及海胆等海生物时抓取适应性不强,抓取海生物时抓力不可控而导致海生物容易受到损伤降低其商业价值等缺点,设计了一个舵机驱动结合腱绳‑扭簧传动结构的水下欠驱动多指机械手,将驱动施加于各个手指的腱绳,通过腱绳张紧驱动多手指机构完成弯曲抓握动作,实现对海参等海生物的周边包络,形状自适应抓取运动,完成对海生物的无损、可靠性抓取。本发明的具有抓取形状适应性好、抓取包络范围大、抓取无目标损性好、密封性能好、密封结构简单、抓取可靠性高等优点。
-
公开(公告)号:CN111105444A
公开(公告)日:2020-05-05
申请号:CN201911408004.2
申请日:2019-12-31
Applicant: 哈尔滨工程大学
IPC: G06T7/246
Abstract: 本发明涉及一种适用于水下机器人目标抓取的连续跟踪方法,属于视觉目标跟踪技术领域;包括核相关运动模型的建立;HOG特征提取;建立表观模型;模型的更新和迭代。本发明基于核相关滤波理论通过基样本的循环位移实现密集采样从而提取更加丰富的训练样本集合,通过提取HOG特征,建立跟踪目标的表观模型引入核函数从而解决非线性回归问题,提升计算效率,根据反馈结果判断是否需要重新初始化跟踪,提出一种基于系统置信度自判别机制,实现了对目标的连续跟踪。本发明不仅可以保证对水下目标的稳定跟踪,而且能够自行判断遮挡和误跟踪情况,从而重新识别跟踪,进而完成对水下目标的连续跟踪可靠抓取。
-
公开(公告)号:CN111105444B
公开(公告)日:2023-07-25
申请号:CN201911408004.2
申请日:2019-12-31
Applicant: 哈尔滨工程大学
IPC: G06T7/246
Abstract: 本发明涉及一种适用于水下机器人目标抓取的连续跟踪方法,属于视觉目标跟踪技术领域;包括核相关运动模型的建立;HOG特征提取;建立表观模型;模型的更新和迭代。本发明基于核相关滤波理论通过基样本的循环位移实现密集采样从而提取更加丰富的训练样本集合,通过提取HOG特征,建立跟踪目标的表观模型引入核函数从而解决非线性回归问题,提升计算效率,根据反馈结果判断是否需要重新初始化跟踪,提出一种基于系统置信度自判别机制,实现了对目标的连续跟踪。本发明不仅可以保证对水下目标的稳定跟踪,而且能够自行判断遮挡和误跟踪情况,从而重新识别跟踪,进而完成对水下目标的连续跟踪可靠抓取。
-
公开(公告)号:CN112124537B
公开(公告)日:2021-07-13
申请号:CN202011009529.1
申请日:2020-09-23
Applicant: 哈尔滨工程大学
Abstract: 本发明属于水下机器人智能控制技术领域,具体涉及一种海底生物自主吸取捕捞的水下机器人智能控制方法。本发明提供了主要用于在复杂水下环境中完成对目标生物的检测识别并引导机器人作业并实现准确吸取指定目标。本发明在作业时,吸取机器人首先通过水下视觉与强化学习算法识别和跟踪作业目标,继而通过自身的位姿反馈调节和机器人的平台运动的智能控制系统推导和优化模糊规则,指导完成海底生物的自主吸取捕捞作业。本发明基于人工智能研究方面的先进成果,能够实现对目标的连续稳定跟踪和自主吸取,具有识别准确、智能程度高、捕捞效率高、作业成本低等优点,本发明实际应用于水下机器人系统设计,对于海生物的高效自主吸取捕捞具有重要意义。
-
公开(公告)号:CN114035591B
公开(公告)日:2023-05-02
申请号:CN202111350358.3
申请日:2021-11-15
Applicant: 哈尔滨工程大学
IPC: G05D1/06
Abstract: 本发明属于水下机器人技术领域,具体涉及一种水下变曲率壁面运动机器人的运动切换控制方法。本发明通过利用机器人携带的激光测距仪对机器人前方的曲面进行曲率测量,然后利用视觉速度感知补偿器对多普勒速度测量进行准确度提高,接着通过基于视觉的变曲率位置点判定,分别建立平面运动控制律和曲面运动控制律,控制决策下进行控制策略的切换,从而实现机器人在平面运动到曲面运动的平稳切换控制,保证机器人在运动的切换过程中对壁面保持稳定吸附,给机器人壁面移动作业提供一个稳定的作业平台。本发明具有适应性高、灵活性好,可靠性高等优点。
-
-
-
-
-
-
-
-
-