-
公开(公告)号:CN115622684A
公开(公告)日:2023-01-17
申请号:CN202211433166.3
申请日:2022-11-16
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 暨南大学
Abstract: 本发明公开了一种基于全同态加密的隐私计算异构加速方法及装置,本发明从内存和指令两个层级对全同态加密算法进行优化,根据计算负载动态调配GPU中的Block块,将计算量过大的任务拆小,计算量小的任务合并变大,控制结果合并过程中的访存竞争。利用GPU中的内存层次结构,减少SM上同时分配的访存量大的任务数,分配更多的共享内存提升内存命中率,减少与全局内存的通信;设计异构计算流:从时间上和空间上,共享有限的硬件资源。本发明在GPU中实现NTT/INTT算法的挑战是高效地分配线程以实现高利用率,为了获得最佳性能,所有线程都应该是繁忙的,每个线程的工作负载应该是相等的。
-
公开(公告)号:CN115622684B
公开(公告)日:2023-03-28
申请号:CN202211433166.3
申请日:2022-11-16
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 暨南大学
Abstract: 本发明公开了一种基于全同态加密的隐私计算异构加速方法及装置,本发明从内存和指令两个层级对全同态加密算法进行优化,根据计算负载动态调配GPU中的Block块,将计算量过大的任务拆小,计算量小的任务合并变大,控制结果合并过程中的访存竞争。利用GPU中的内存层次结构,减少SM上同时分配的访存量大的任务数,分配更多的共享内存提升内存命中率,减少与全局内存的通信;设计异构计算流:从时间上和空间上,共享有限的硬件资源。本发明在GPU中实现NTT/INTT算法的挑战是高效地分配线程以实现高利用率,为了获得最佳性能,所有线程都应该是繁忙的,每个线程的工作负载应该是相等的。
-
公开(公告)号:CN117527224A
公开(公告)日:2024-02-06
申请号:CN202311669147.5
申请日:2023-12-06
Applicant: 支付宝(杭州)信息技术有限公司 , 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/08
Abstract: 本说明书实施例提供一种多方安全计算的方法及装置,在多方安全计算的方法中,任意的第一方本地计算第一数据和第二数据各自的第一编号分片和第二编号分片的交叉乘积之和,得到第一目标和值,其中第一编号不同于第二编号。获取与第二方以及第三方共享的随机数,第二方同样持有第一编号分片和第二编号分片,第三方持有第一编号分片和第二编号分片之一。对第一目标和值和随机数进行运算,得到第一目标分片。基于第一目标分片、随机数和0得到第一目标和值的三个本方分片。根据与第二方的协议,与第二方各自将第一目标分片的分片数据发送给第四方,使其基于第一目标分片得到三个对应分片。
-
公开(公告)号:CN118249980A
公开(公告)日:2024-06-25
申请号:CN202410399028.0
申请日:2024-04-03
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种基于同态加密和安全外包矩阵的隐私保护机器学习方法及装置,方法包括:由密钥生成中心KGC基于同态加密算法的KeyGen函数进行初始化,生成公钥pk、私钥sk和评估密钥evk,然后将初始化参数parmas、公钥pk和评估密钥evk发送给云服务方S,将初始化参数parmas、私钥sk和公钥pk发送到客户端C;客户端C基于同态加密算法的Enc函数完成矩阵数据的打包和加密,并将加密后的密文传输至云服务方S;云服务方S通过基于同态加密技术的安全矩阵运算方法对接收到密文进行安全矩阵运算,得到密文结果;云服务方S将经过安全矩阵运算得到的结果密文发送回客户端,客户段对收到的密文进行解密。通过本发明可以安全高效的完成隐私保护的计算。
-
-
-