一种多尺度增强体耦合增强镁基复合材料的制备方法

    公开(公告)号:CN118639044A

    公开(公告)日:2024-09-13

    申请号:CN202410714399.3

    申请日:2024-06-04

    Abstract: 本发明公开了一种多尺度增强体耦合增强镁基复合材料的制备方法,属于复合材料技术领域,包括以下步骤:S1、对微米增强体和基体进行预处理;S2、进行高温高粘度分散框架的搭建,形成含有石墨烯纳米片和氧化镁纳米颗粒(GNPs&MgOnp)的镁熔体;S3、对高温高粘度分散框架进行填充,得到多尺度耦合增强镁基复合材料熔体;S4、进行压铸和热变形处理。本发明基于液态冶金法,通过气液反应原位自生引入纳米增强体实现镁熔体粘度的调控,避免纳米颗粒的氧化燃烧,创造出含有大量纳米增强体的高温高粘度分散环境,解决了微米颗粒界面结合差、分散难的问题,实现微米增强体的均匀分散及与镁基体的良好界面结合,实现微纳米增强体对镁基体的协同增强。

    一种高模量镁合金及其制备方法

    公开(公告)号:CN114574744B

    公开(公告)日:2022-11-01

    申请号:CN202210212489.3

    申请日:2022-03-04

    Abstract: 一种高模量镁合金及其制备方法,涉及一种镁合金及其制备方法。高模量镁合金按质量分数由稀土元素、Al、Si等元素组成制备方法:按照高模量镁合金中各元素的质量分数称取原料,并将原料预热;在SF6和CO2混合气体保护条件下分批加入原料进入熔炼得到合金溶液;在SF6和CO2混合气体保护条件下冷却得到合金铸锭。本发明通过合理调控元素比列,使镁合金具备高模量和适当的力学性能,使其满足大部分领域对高模量镁合金的需求。制备方法简单、设计合理,流程简单,可有效制备高模量镁合金,同时在热加工过程中呈现良好的成型性。

    一种高模量镁合金及其制备方法

    公开(公告)号:CN114574744A

    公开(公告)日:2022-06-03

    申请号:CN202210212489.3

    申请日:2022-03-04

    Abstract: 一种高模量镁合金及其制备方法,涉及一种镁合金及其制备方法。高模量镁合金按质量分数由稀土元素、Al、Si等元素组成制备方法:按照高模量镁合金中各元素的质量分数称取原料,并将原料预热;在SF6和CO2混合气体保护条件下分批加入原料进入熔炼得到合金溶液;在SF6和CO2混合气体保护条件下冷却得到合金铸锭。本发明通过合理调控元素比列,使镁合金具备高模量和适当的力学性能,使其满足大部分领域对高模量镁合金的需求。制备方法简单、设计合理,流程简单,可有效制备高模量镁合金,同时在热加工过程中呈现良好的成型性。

    一种镁合金石墨烯变质剂及其制备方法和应用

    公开(公告)号:CN113265553B

    公开(公告)日:2022-01-28

    申请号:CN202110347111.X

    申请日:2021-03-31

    Abstract: 本发明涉及一种镁合金石墨烯变质剂及其制备方法和应用。所述方法为:将镁在坩埚中加热熔化,得到镁熔体;在坩埚的顶部引入空气或由氧气与稀有气体混合而成的混合气体,混合气体中氧气的体积含量为10~25%;将CO持续通入至镁熔体中进行镁热反应,直至镁熔体中生成的石墨烯的质量百分含量为0.1~10%,得到复合熔体;在CO与镁熔体发生镁热反应的同时,使坩埚的顶部的温度为300℃以上,并在坩埚的顶部引燃逸出的未参与反应的CO;将复合熔体静置,然后使其凝固,得到镁合金石墨烯变质剂。本发明有效控制了反应产物中氧化镁的含量,既能够对基体镁实现晶粒细化,也能够改变共晶组织的形貌,能够使得铸件获得理想的力学性能。

    一种高强度镁合金丝材及其制备方法

    公开(公告)号:CN113774262A

    公开(公告)日:2021-12-10

    申请号:CN202111069352.9

    申请日:2021-09-13

    Abstract: 一种高强度镁合金丝材及其制备方法,涉及一种镁合金丝材及其制备方法,为了解决现有的镁合金成形性差,难以拉拔成丝的问题。丝材按质量百分比由1%~1.08%的Al、0.24%~0.3%的Ca、0.5%~0.68%的Mn和余量的Mg组成。方法:称取原料制备铸锭,均匀化退火,挤压成棒材,固溶后水冷;进行19道次的热拉拔,退火后再进行5道次热拉拔。本发明得到直径为1.6‑3.8mm的丝材,塑性和韧性良好,抗拉强度达348‑431MPa,屈服强度达300‑394MPa,延伸率达4%‑7%;拉拔过程中只进行一次中间退火,提高了镁合丝材的制备效率,降低了生产成本。本发明适用于制备高强度镁合金丝材。

    一种高导热高强Mg-Al-La-Mn变形镁合金及其制备方法

    公开(公告)号:CN113322404A

    公开(公告)日:2021-08-31

    申请号:CN202110628782.3

    申请日:2021-06-03

    Abstract: 一种高导热高强Mg‑Al‑La‑Mn变形镁合金及其制备方法,涉及一种镁合金及其制备方法。为了解决镁合金强度和热导率呈倒置关系的问题。元素和含量为:Al:2.8‑3.5wt.%,La:4.3‑5.0wt.%,Mn:0.28‑0.3wt.%,Mg为余量。方法:原材料准备和预热,依次熔炼纯Mg锭、Mg‑La中间合金、Mg‑Mn中间合金和Mg‑Al中间合金,坩埚进行水冷和脱模得到镁合金铸锭;去除镁合金铸锭的氧化部分并车削加工得到铸态坯料,挤压变形。本发明由于挤压后合金的大部分晶粒均匀细小,第二相弥散分布,因此也改善了合金的塑性。本发明适用于制备镁合金。

    一种含石墨烯细化剂的镁合金制备方法及应用

    公开(公告)号:CN109554573B

    公开(公告)日:2021-05-04

    申请号:CN201910049713.X

    申请日:2019-01-18

    Abstract: 一种含石墨烯细化剂的镁合金制备方法及应用,它涉及一种细化剂的制备方法及应用。本发明为了解决镁及镁合金中晶粒细化方法局限,晶粒容易长大的问题;首先将镁及镁合金在六氟化硫和二氧化碳的混合气氛的保护下在坩埚中加热,金属熔化后,将CO2气体通入到镁合金熔体中,并保持机械搅拌,通过镁热反应产生的石墨烯及其表面的纳米氧化镁即晶粒细化剂。将含有晶粒细化剂的镁及镁合金凝固,然后将制备好的含有晶粒细化剂的合金置入所需的镁合金体系中,细化合金熔体,在凝固过程中石墨烯以及表面的氧化镁形成更多的形核质点,同时阻止晶粒的长大。从而获得具有细小晶粒结构的铸态镁合金。本发明应用于有色金属材料制造领域。

    一种高强度高延展性Cu-Ni-Si合金板材及其制备方法

    公开(公告)号:CN119061334A

    公开(公告)日:2024-12-03

    申请号:CN202411058629.1

    申请日:2024-08-02

    Abstract: 本发明提供了一种高强度高延展性Cu‑Ni‑Si合金板材及其制备方法,属于铜合金技术领域,该制备方法包括:将热轧态Cu‑Ni‑Si合金进行第一深冷轧制、中间时效处理和第二深冷轧制,得到深冷轧制板材;第一深冷轧制后的总变形量为热轧态Cu‑Ni‑Si合金初始厚度的40~45%;第二深冷轧制后的总变形量为热轧态Cu‑Ni‑Si合金初始厚度的70~80%;将深冷轧制板材进行分级时效处理,得到高强度高延展性Cu‑Ni‑Si合金板材。本发明提供的Cu‑Ni‑Si合金板材的制备方法采用中等变形量(70~80%)的轧制即可实现在维持高强度、优异导电性的基础上,提升Cu‑Ni‑Si合金板材的塑性。

    一种镁合金石墨烯变质剂及其制备方法和应用

    公开(公告)号:CN113265553A

    公开(公告)日:2021-08-17

    申请号:CN202110347111.X

    申请日:2021-03-31

    Abstract: 本发明涉及一种镁合金石墨烯变质剂及其制备方法和应用。所述方法为:将镁在坩埚中加热熔化,得到镁熔体;在坩埚的顶部引入空气或由氧气与稀有气体混合而成的混合气体,混合气体中氧气的体积含量为10~25%;将CO持续通入至镁熔体中进行镁热反应,直至镁熔体中生成的石墨烯的质量百分含量为0.1~10%,得到复合熔体;在CO与镁熔体发生镁热反应的同时,使坩埚的顶部的温度为300℃以上,并在坩埚的顶部引燃逸出的未参与反应的CO;将复合熔体静置,然后使其凝固,得到镁合金石墨烯变质剂。本发明有效控制了反应产物中氧化镁的含量,既能够对基体镁实现晶粒细化,也能够改变共晶组织的形貌,能够使得铸件获得理想的力学性能。

Patent Agency Ranking