-
公开(公告)号:CN116933520B
公开(公告)日:2024-07-16
申请号:CN202310884646.X
申请日:2023-07-18
Applicant: 哈尔滨工业大学
IPC: G06F30/20 , G06F17/11 , G06F17/12 , G06F119/08 , G06F119/14
Abstract: 球轴承动力学与瞬态热混合润滑耦合分析方法,它属于轴承摩擦动力学领域。本发明解决了现有方法不能对复杂苛刻工况下的球轴承动力学和热混合润滑耦合行为进行分析的问题。本发明引入非牛顿流变模型,提出了基于时变热混合润滑模型的混合润滑摩擦计算方法,可以实现在不同润滑状态工况条件下的摩擦特性预测。考虑润滑摩擦与轴承动态特性的相互作用,通过耦合混合热弹流中的最小膜厚和摩擦系数将球轴承动力学和热混合润滑分析有机集成,填补球轴承动力学模型已有公式和算法的不足,建立了精确的球轴承动力学与瞬态热混合润滑耦合分析模型。本发明方法可以应用于球轴承动力学与瞬态热混合润滑耦合分析。
-
公开(公告)号:CN104459182B
公开(公告)日:2017-11-03
申请号:CN201410658215.2
申请日:2014-11-18
Applicant: 哈尔滨工业大学
IPC: G01P3/36
Abstract: 内外圈同时转动的高速滚动轴承保持架光纤测速装置及测速方法,涉及轴承测速及运行状态监测领域。本发明是为了解决现有的测轴承保持架转速的方法,需要改变轴承保持架结构,并且不能测内外圈同时转动的滚动轴承保持架转速和不能测量打滑的问题。本发明所述外圈拖动装置带动一号轴旋转,内圈拖动装置带动二号轴旋转,1号测速装置和2号测速装置分别测量外圈拖动装置和内圈拖动装置转速,光纤放大器产生光信号经发射端光纤发出,透过外圈安装工装上排布光纤散射形成稳定的光斑,透过滚动轴承被接收端光纤接收,被光纤放大器接收的光信号将光信号进行放大处理后产生脉冲信号给计数器,计数器输出端连显示器输入端。它可用于高速滚动轴承状态监测中。
-
公开(公告)号:CN119334294A
公开(公告)日:2025-01-21
申请号:CN202411330310.X
申请日:2024-09-23
Abstract: 一种球盘式拖动力测试试验盘接触轨道半径标定方法,步骤包括:测量确定试验用球的半径rb;获取滑滚比s=0时球的转速nbo;开启润滑系统使润滑油喷向球盘接触区进行润滑,然后进行伺服加载,使球和盘发生接触,接触应力可以是球盘试验机接触力设计范围的任意值;获取当出现由载荷传感器2受力跳变到载荷传感器1受力时,此时球驱动电机转速为临界转速nb′;当出现由载荷传感器1受力跳变到载荷传感器2受力时,此时球驱动电机转速为临界转速nb″;取两个临界转速nb′和nb″的平均值为球盘滚动接触时球的转速#imgabs0##imgabs1#盘的接触轨道半径为:#imgabs2#
-
公开(公告)号:CN104459182A
公开(公告)日:2015-03-25
申请号:CN201410658215.2
申请日:2014-11-18
Applicant: 哈尔滨工业大学
IPC: G01P3/36
Abstract: 内外圈同时转动的高速滚动轴承保持架光纤测速装置及测速方法,涉及轴承测速及运行状态监测领域。本发明是为了解决现有的测轴承保持架转速的方法,需要改变轴承保持架结构,并且不能测内外圈同时转动的滚动轴承保持架转速和不能测量打滑的问题。本发明所述外圈拖动装置带动一号轴旋转,内圈拖动装置带动二号轴旋转,1号测速装置和2号测速装置分别测量外圈拖动装置和内圈拖动装置转速,光纤放大器产生光信号经发射端光纤发出,透过外圈安装工装上排布光纤散射形成稳定的光斑,透过滚动轴承被接收端光纤接收,被光纤放大器接收的光信号将光信号进行放大处理后产生脉冲信号给计数器,计数器输出端连显示器输入端。它可用于高速滚动轴承状态监测中。
-
公开(公告)号:CN117589609A
公开(公告)日:2024-02-23
申请号:CN202311688041.X
申请日:2023-12-08
Abstract: 可变倾角循环加载测试系统、接触疲劳及临界载荷试验方法,它涉及接触式疲劳试验机技术领域。本发明解决了现有固体薄膜性能测试方法存在仅可以对临界载荷等测试数据进行比较,判定膜基系统结合性能的优劣,而无法实现对轴承钢表面的硬质固体薄膜的疲劳承载性能的综合定量表征分析的问题。本发明的伺服电机安装在竖直滑台顶部,电磁激振器与竖直滑台滑轨滑动连接,加载头安装在电磁激振器主轴上,竖直滑台安装在光学平台上,三维力传感器、x轴角位移台、y轴角位移台和平面滑台沿竖直方向由上至下依次连接,平面滑台安装在光学平台上,试样安装在三维力传感器上。本发明针对固体薄膜疲劳承载行为分析进行接触疲劳寿命试验和临界载荷试验。
-
公开(公告)号:CN116793839A
公开(公告)日:2023-09-22
申请号:CN202310757496.6
申请日:2023-06-26
Applicant: 哈尔滨工业大学
Abstract: 一种轴承钢表面硬质固体薄膜结合性能的分析方法,它属于固体薄膜的损伤失效行为分析、性能测量表征领域。本发明解决了现有分析方法不能对薄膜断裂和界面分层进行单独表征,且对薄膜断裂和界面分层表征的准确性差的问题。本发明采取的主要技术方案为:采用有限元、扩展有限元对压痕、划痕过程进行了综合定量分析,获取了薄膜断裂参数和界面结合强度参数,通过图像识别技术对硬质固体薄膜的分层剥落损伤中的薄膜断裂面积和界面分层面积分别进行了辨识,剥离了薄膜断裂的影响,更加精确地获取了界面分层面积,可以对薄膜断裂和界面分层进行单独表征,并提高了对薄膜断裂和界面分层表征的准确性。本发明方法可以应用于固体薄膜结合性能测量表征。
-
公开(公告)号:CN105157982B
公开(公告)日:2017-07-28
申请号:CN201510341830.5
申请日:2015-06-18
Applicant: 哈尔滨工业大学
IPC: G01M13/04
Abstract: 滚动轴承的低耦合轴向与径向复合加载装置及加载方法,涉及轴承试验的加载领域。本发明是为了解决现在的同时对被试轴承施加轴向载荷和径向载荷时,加载后轴承和载荷接触面间横向摩擦力大,加载装置横向刚度大,一个方向的加载头和试验工装之间的摩擦力限制另一方向加载头的移动,进而影响到另一方向载荷的施加,使得一个或两个方向的载荷不能完全加载到被试轴承,造成载荷加载不准确的问题。本发明在轴承下放小油箱,液压泵抽取小油箱内的油,最后注入到压力油进口,经液体静压节流孔后产生液体静压承载能力,通过弹性连接套连接液压动盘和液压静盘,降低不同方向载荷耦合的作用。它可用到需要同时施加相互垂直的两个方向载荷的试验装置中。
-
公开(公告)号:CN118421174A
公开(公告)日:2024-08-02
申请号:CN202410521771.9
申请日:2024-04-28
IPC: C09D167/00 , C09D5/03 , C09D7/61 , C09D7/63 , C09D7/65 , C09D127/12 , C09D163/00 , C09D133/00
Abstract: 本发明属于新材料技术领域,提供了一种制备超疏水粉末涂料的方法,步骤包括:(1)将热固性粉末涂料用树脂及其固化剂与疏水颗粒经高速搅拌机均匀混合,经挤出机挤出和辊压冷却形成漆片;(2)将漆片与疏水纳米颗粒共混,经粉碎机粉碎筛分,得到的混合粉末即为耐磨性超疏水涂层材料。同时还提供了利用该方法制备得到的粉末涂料,以及应用该粉末涂料经静电喷涂和固化,制备具有疏水铠甲结构的耐磨性超疏水涂层,该涂层由于具有疏水铠甲结构,相比普通的喷涂涂层耐磨性更强,对涂层厚度依赖性低;相比需要刻制铠甲结构的涂层,工艺更简单,成本大大降低,施工方便。
-
公开(公告)号:CN117367332A
公开(公告)日:2024-01-09
申请号:CN202311439949.7
申请日:2023-11-01
Applicant: 哈尔滨工业大学
IPC: G01B17/02
Abstract: 一种高速滚子轴承弹流接触区中心油膜厚度超声测量方法,属于润滑油膜厚度测量领域。本发明针对目前的超声波方法不适用对高速滚动轴承接触区油膜厚度进行测量的问题。包括:根据滚子轴承几何关系和运行工况计算确定超声脉冲的发射频率,使按顺序将所有油膜分布周期上的超声聚焦焦斑叠加到同一油膜分布周期上后,得到的叠加后相邻超声聚焦焦斑的间隔距离不大于目标距离;从而使叠加后油膜分布周期上存在与接触区油膜中心轴线作用的超声聚焦焦斑;同时使超声反射波信号基数的数量满足覆盖油膜分布周期所需的最少数量;再提取目标超声反射波信号并进行计算,得到接触区中心油膜厚度。本发明用于高转速下油膜厚度的测量。
-
公开(公告)号:CN116933520A
公开(公告)日:2023-10-24
申请号:CN202310884646.X
申请日:2023-07-18
Applicant: 哈尔滨工业大学
IPC: G06F30/20 , G06F17/11 , G06F17/12 , G06F119/08 , G06F119/14
Abstract: 球轴承动力学与瞬态热混合润滑耦合分析方法,它属于轴承摩擦动力学领域。本发明解决了现有方法不能对复杂苛刻工况下的球轴承动力学和热混合润滑耦合行为进行分析的问题。本发明引入非牛顿流变模型,提出了基于时变热混合润滑模型的混合润滑摩擦计算方法,可以实现在不同润滑状态工况条件下的摩擦特性预测。考虑润滑摩擦与轴承动态特性的相互作用,通过耦合混合热弹流中的最小膜厚和摩擦系数将球轴承动力学和热混合润滑分析有机集成,填补球轴承动力学模型已有公式和算法的不足,建立了精确的球轴承动力学与瞬态热混合润滑耦合分析模型。本发明方法可以应用于球轴承动力学与瞬态热混合润滑耦合分析。
-
-
-
-
-
-
-
-
-