一种多自由度冗余驱动运动台的柔性模态抑制方法

    公开(公告)号:CN117850316B

    公开(公告)日:2024-06-21

    申请号:CN202410024802.X

    申请日:2024-01-08

    Abstract: 一种多自由度冗余驱动运动台的柔性模态抑制方法,属于半导体制造装备及运动台振动抑制领域。方法步骤是:步骤一:建立运动台基于模态特性且包含时延的数学模型;步骤二:分解动态输入解耦矩阵,使其包含一个动态参数矩阵,实现刚性模态独立控制,仅针对柔性模态抑制需求对动态参数矩阵设计;步骤三:基于全通滤波的方法,将动态参数矩阵表示为两个全通滤波器的线性组合;步骤四:以满足每个柔性模态谐振频率点的零增益为优化目标,建立优化方程和约束条件,利用启发式智能优化算法对全通滤波器参数进行优化;步骤五:得到满足柔性模态抑制需求的动态输入解耦矩阵。本发明能够实现在有限执行器冗余度条件下对全频段所有可控柔性模态的高性能抑制。

    一种精密运动平台的运动轨迹规划系统的参数整定方法

    公开(公告)号:CN116700151B

    公开(公告)日:2024-05-31

    申请号:CN202310860404.7

    申请日:2023-07-13

    Abstract: 一种精密运动平台的运动轨迹规划系统的参数整定方法,属于精密运动平台技术领域。轨迹生成器的输出为参考轨迹,参考轨迹经柔性系统获得系统输出,且柔性系统的共振频率、阻尼系数及系统输出的残余振荡的信息共同提供给轨迹生成器以修正参考轨迹。方法如下:建立非对称S曲线;获得柔性系统的极点;获得运动轨迹的零点,并建立零残余振动约束下的残余振动方程组;求残余振动为零时的参数值;选择最优的参数值。本发明解决了传统精密运动平台运动轨迹规划大多采用恒加、减速的方式,运动轨迹容易激励柔性结构振动模态造成残余振动甚至物理损伤的问题,同时解决了传统柔性结构残余振动抑制需添加额外的减震装置,重量增加和经济成本较高的问题。

    一种多自由度冗余驱动运动台的柔性模态抑制方法

    公开(公告)号:CN117850316A

    公开(公告)日:2024-04-09

    申请号:CN202410024802.X

    申请日:2024-01-08

    Abstract: 一种多自由度冗余驱动运动台的柔性模态抑制方法,属于半导体制造装备及运动台振动抑制领域。方法步骤是:步骤一:建立运动台基于模态特性且包含时延的数学模型;步骤二:分解动态输入解耦矩阵,使其包含一个动态参数矩阵,实现刚性模态独立控制,仅针对柔性模态抑制需求对动态参数矩阵设计;步骤三:基于全通滤波的方法,将动态参数矩阵表示为两个全通滤波器的线性组合;步骤四:以满足每个柔性模态谐振频率点的零增益为优化目标,建立优化方程和约束条件,利用启发式智能优化算法对全通滤波器参数进行优化;步骤五:得到满足柔性模态抑制需求的动态输入解耦矩阵。本发明能够实现在有限执行器冗余度条件下对全频段所有可控柔性模态的高性能抑制。

    一种纳米精度运动台学习控制系统及方法

    公开(公告)号:CN116774585A

    公开(公告)日:2023-09-19

    申请号:CN202310751744.6

    申请日:2023-06-25

    Abstract: 一种纳米精度运动台学习控制系统及方法,涉及一种运动台控制系统及方法。闭环反馈部分包括运动轨迹生成器、反馈控制器、运动台及傅里叶变换器一,前馈部分包括傅里叶变换器二、学习控制器、迭代后移算子及傅里叶逆变换器。迭代实验次数j赋初值为j=1,第j次频域前馈信号赋初值为0;运行系统采集频域误差信号和频域位置测量信号;更新第j+1次频域前馈信号;迭代实验次数j值加1,跳转至步骤二。能够有效抑制外部噪声和扰动的影响,提高收敛性能,而且计算量较少,学习增益确定简单,鲁棒性强,便于工程应用。

    一种面向超精密运动系统的频响辨识方法

    公开(公告)号:CN116151009B

    公开(公告)日:2023-07-18

    申请号:CN202310170473.5

    申请日:2023-02-27

    Inventor: 刘杨 张晨 宋法质

    Abstract: 一种面向超精密运动系统的频响辨识方法,属于超精密运动辨识领域。方法是:利用轨迹生成器,生成运动台的期望运动轨迹;利用激励信号生成器,生成激励信号;激励信号与运动台闭环系统的反馈控制器的输出相加所得结果作为运动台的输入,运动台的闭环系统根据运动台的期望运动轨迹减去运动台的实际运动轨迹,得到运动台的伺服误差,伺服误差信号经过反馈控制器得到反馈控制器的输出;频响估计器的输入为运动台的输入与运动台的输出,输出为频响估计器计算所得频响,离散傅里叶变换器对收集的运动台的输入信号与运动台的输出信号分别进行离散傅里叶变换;利用频响估计器进行频响辨识。本发明用于超精密运动系统的频响辨识。

    一种面向超精密运动系统的频响辨识方法

    公开(公告)号:CN116151009A

    公开(公告)日:2023-05-23

    申请号:CN202310170473.5

    申请日:2023-02-27

    Inventor: 刘杨 张晨 宋法质

    Abstract: 一种面向超精密运动系统的频响辨识方法,属于超精密运动辨识领域。方法是:利用轨迹生成器,生成运动台的期望运动轨迹;利用激励信号生成器,生成激励信号;激励信号与运动台闭环系统的反馈控制器的输出相加所得结果作为运动台的输入,运动台的闭环系统根据运动台的期望运动轨迹减去运动台的实际运动轨迹,得到运动台的伺服误差,伺服误差信号经过反馈控制器得到反馈控制器的输出;频响估计器的输入为运动台的输入与运动台的输出,输出为频响估计器计算所得频响,离散傅里叶变换器对收集的运动台的输入信号与运动台的输出信号分别进行离散傅里叶变换;利用频响估计器进行频响辨识。本发明用于超精密运动系统的频响辨识。

    一种动线圈式自驱动磁浮导轨装置及其控制方法

    公开(公告)号:CN113530971B

    公开(公告)日:2022-02-08

    申请号:CN202110865440.3

    申请日:2021-07-29

    Inventor: 刘杨 缪骞 宋法质

    Abstract: 一种动线圈式自驱动磁浮导轨装置及其控制方法,属于高端装备技术领域。四个导套支撑框架组合构成方形套,四个导套支撑框架的里侧面的中心处分别封装有E型组件,线圈绕组封装在位于上方的导套支撑框架的里侧面上,并位于E型组件的一侧;四个I型电磁铁分别封装在导轴支撑框架的上下左右四个侧面上,四个I型电磁铁与四个E型组件一一相对布置,永磁体封装在导轴支撑框架的上侧,永磁体与线圈绕组相对布置;双极电磁铁为E型,两个霍尔元件安装于双极电磁铁两级极面的中心处,感应线圈缠绕在双极电磁铁两级表面,初级线圈缠绕在双极电磁铁两级的感应线圈表面,电涡流传感器安装于双极电磁铁的中间齿的中心处。本发明用于超精密系统中。

    一种动线圈式自驱动磁浮导轨装置及其控制方法

    公开(公告)号:CN113530971A

    公开(公告)日:2021-10-22

    申请号:CN202110865440.3

    申请日:2021-07-29

    Inventor: 刘杨 缪骞 宋法质

    Abstract: 一种动线圈式自驱动磁浮导轨装置及其控制方法,属于高端装备技术领域。四个导套支撑框架组合构成方形套,四个导套支撑框架的里侧面的中心处分别封装有E型组件,线圈绕组封装在位于上方的导套支撑框架的里侧面上,并位于E型组件的一侧;四个I型电磁铁分别封装在导轴支撑框架的上下左右四个侧面上,四个I型电磁铁与四个E型组件一一相对布置,永磁体封装在导轴支撑框架的上侧,永磁体与线圈绕组相对布置;双极电磁铁为E型,两个霍尔元件安装于双极电磁铁两级极面的中心处,感应线圈缠绕在双极电磁铁两级表面,初级线圈缠绕在双极电磁铁两级的感应线圈表面,电涡流传感器安装于双极电磁铁的中间齿的中心处。本发明用于超精密系统中。

    一种三自由度光刻机双工件台框架气浮补偿方法

    公开(公告)号:CN104914683B

    公开(公告)日:2017-06-13

    申请号:CN201510353919.3

    申请日:2015-06-24

    Abstract: 一种三自由度光刻机双工件台框架气浮补偿方法,本发明属于光刻机双工件台框架运动控制的高精度控制定位的技术领域。它的方法步骤为:在框架的一个长边同一侧固定安装第一三角光传感器、第二三角光传感器,在框架的短边上固定安装第三三角光传感器;设传感器的测量值在初始值的基础上变化了△m1,△m2,△m3,利用△m1,△m2求角度θ;以第二三角光传感器为研究对象,计算三个运动对第二三角光传感器读数的影响;得出框架沿Y方向偏移的距离△Y,在X向偏移的距离△X;根据θ,△X,△Y的值进行电机给定补偿;补偿公转电机控制给定,补偿X/Y电机的控制给定。本发明可以实现光刻机双工件台的换台补偿,对于外界的对框架的干扰可以实时动态补偿宏动电机的控制给定,达到顺利换台的目的。

    一种抑制直线电机定位力补偿控制器

    公开(公告)号:CN104201963B

    公开(公告)日:2017-01-18

    申请号:CN201410460927.3

    申请日:2014-09-11

    Abstract: 一种抑制直线电机定位力补偿控制器,属于电机补偿控制领域。为了解决目前的补偿控制器结构复杂且控制周期长反应速度慢的问题。本发明的补偿控制器,采用迭代控制器的方法,对永磁同步直线电机的推力波动进行在线补偿,其中补偿控制器采用了PI与重复控制相结合的方式进行设计。这种方法避免了利用扰动模型进行补偿控制时,由复杂的数学模型或者冗杂的建模数据带来的系统开销,将非线性的直线电机推力波动补偿控制大幅简化,可以有效降低控制周期进而提升系统的反应速度。它用于直线电机的定位力补偿。

Patent Agency Ranking