一种五组分SiBCNZr陶瓷先驱体的合成方法

    公开(公告)号:CN114213664A

    公开(公告)日:2022-03-22

    申请号:CN202111583211.9

    申请日:2021-12-22

    Abstract: 一种五组分SiBCNZr陶瓷先驱体的合成方法,本发明属于高分子材料技术领域,具体涉及一种五组分SiBCNZr陶瓷先驱体的合成方法。本发明要解决现有方法制备的SiBCN陶瓷先驱体抗氧化性能差的问题。在固化过程中将Zr等元素交联在SiBCN基先驱体中,即通过共价键将Si、N、B、C、Zr连接起来,形成含有大量Si、B、N、C、Zr元素的先驱体聚合物。可有效地调整SiBCNZr陶瓷先驱体的结构,保证先驱体中元素分布的均匀性。随后通过固化反应使先驱体脱去小分子形成高聚物,最终经过热解能够较高收率获得共价键连接稳定的SiBCNZr陶瓷材料。本发明用于五组分SiBCNZr陶瓷先驱体。

    一种五组分SiBCNZr陶瓷先驱体的合成方法

    公开(公告)号:CN114213664B

    公开(公告)日:2023-01-24

    申请号:CN202111583211.9

    申请日:2021-12-22

    Abstract: 一种五组分SiBCNZr陶瓷先驱体的合成方法,本发明属于高分子材料技术领域,具体涉及一种五组分SiBCNZr陶瓷先驱体的合成方法。本发明要解决现有方法制备的SiBCN陶瓷先驱体抗氧化性能差的问题。在固化过程中将Zr等元素交联在SiBCN基先驱体中,即通过共价键将Si、N、B、C、Zr连接起来,形成含有大量Si、B、N、C、Zr元素的先驱体聚合物。可有效地调整SiBCNZr陶瓷先驱体的结构,保证先驱体中元素分布的均匀性。随后通过固化反应使先驱体脱去小分子形成高聚物,最终经过热解能够较高收率获得共价键连接稳定的SiBCNZr陶瓷材料。本发明用于五组分SiBCNZr陶瓷先驱体。

    基于氧化硅-氧化铪复合氧化层高温防护的碳纤维/SiHfBOC复合材料的制备方法

    公开(公告)号:CN117209297B

    公开(公告)日:2025-01-03

    申请号:CN202311193001.8

    申请日:2023-09-15

    Abstract: 基于氧化硅‑氧化铪复合氧化层高温防护的碳纤维/SiHfBOC复合材料的制备方法,本发明涉及一种基于氧化硅‑氧化铪复合氧化层高温防护的碳纤维/SiHfBOC复合材料的制备方法,本发明是为了获得耐高温氧化烧蚀的陶瓷基复合材料,采用涂敷有PyC涂层的三维编织T700‑PAN纤维编织体作为承力骨架,使用SiHfBOC先驱体陶瓷作为基体。通过压力辅助先驱体浸渍裂解法将承力骨架与陶瓷基体进行复合。本工艺不仅制备温度低,对碳纤维损伤较小,还可以高效致密化复合材料,复合材料具有接近90%的致密度,可以在高温烧蚀环境下有效阻止氧通道的形成,实现较好的保护作用。本发明用于耐氧化烧蚀复合材料技术领域。

    一种制备聚吡咯改性的SiC纳米线/石墨烯泡沫电磁波吸收材料的方法

    公开(公告)号:CN108251052A

    公开(公告)日:2018-07-06

    申请号:CN201810042999.4

    申请日:2018-01-16

    Abstract: 一种制备聚吡咯改性的SiC纳米线/石墨烯泡沫电磁波吸收材料的方法,它涉及一种电磁波吸收材料的制备方法。本发明的目的是要解决现有SiC纳米线/石墨烯泡沫仅只能在某一波段实现有效吸收的问题。方法:一、制备氧化石墨烯分散液;二、制备石墨烯水凝胶;三、制备含Ni(NO3)2的石墨烯水凝胶;四、制备石墨烯泡沫;五、制备SiC纳米线/石墨烯泡沫;六、先浸入吡咯溶液中,再浸入FeCl3水溶液中,经过洗涤干燥,得到聚吡咯改性的SiC纳米线/石墨烯泡沫电磁波吸收材料。优点:实现在整个X波段和Ku波段之间的电磁波有效吸收的可调性。本发明主要用于制备聚吡咯改性的SiC纳米线/石墨烯泡沫电磁波吸收材料。

    一种制备石墨烯网络增韧ZrC-SiC超高温陶瓷材料的方法

    公开(公告)号:CN108178650A

    公开(公告)日:2018-06-19

    申请号:CN201810059344.8

    申请日:2018-01-22

    Abstract: 一种制备石墨烯网络增韧ZrC-SiC超高温陶瓷材料的方法,本发明涉及陶瓷材料的制备方法领域。本发明是要解决现有ZrC-SiC抗损伤容限差的技术问题。方法:一、制备氧化石墨烯水溶液;二、制备氧化石墨烯分散液;三、定向冷冻,制备PVA改性的石墨烯网络;四、热还原,真空浸渍,制备石墨烯网络包裹陶瓷粉体的生坯;五、放电等离子烧结。本发明方法制备的陶瓷材料的断裂韧性由3.82MPa·m1/2增加到4.26MPa·m1/2,临界裂纹尺寸由26.8μm增加到119.4μm,断裂功由44.7J/m2增加到151.6J/m2。本发明用于制备陶瓷材料。

    一种制备石墨烯网络增韧ZrC-SiC超高温陶瓷材料的方法

    公开(公告)号:CN108178650B

    公开(公告)日:2021-06-01

    申请号:CN201810059344.8

    申请日:2018-01-22

    Abstract: 一种制备石墨烯网络增韧ZrC‑SiC超高温陶瓷材料的方法,本发明涉及陶瓷材料的制备方法领域。本发明是要解决现有ZrC‑SiC抗损伤容限差的技术问题。方法:一、制备氧化石墨烯水溶液;二、制备氧化石墨烯分散液;三、定向冷冻,制备PVA改性的石墨烯网络;四、热还原,真空浸渍,制备石墨烯网络包裹陶瓷粉体的生坯;五、放电等离子烧结。本发明方法制备的陶瓷材料的断裂韧性由3.82MPa·m1/2增加到4.26MPa·m1/2,临界裂纹尺寸由26.8μm增加到119.4μm,断裂功由44.7J/m2增加到151.6J/m2。本发明用于制备陶瓷材料。

    一种制备高损伤容限的面内各向同性的硼化锆基超高温独石结构陶瓷的方法

    公开(公告)号:CN109293384B

    公开(公告)日:2021-03-30

    申请号:CN201811287055.X

    申请日:2018-10-31

    Abstract: 一种制备高损伤容限的面内各向同性的硼化锆基超高温独石结构陶瓷的方法,涉及一种硼化锆基超高温独石陶瓷材料的制备方法。目的是解决ZrB2基超高温陶瓷抗损伤容限差及ZrB2基纤维独石陶瓷存在严重面内各向异性的问题。制备方法:将聚醚砜溶解在N‑甲基吡咯烷酮中,并与ZrB2粉体和SiC粉体进行球磨混料得到ZrB2‑SiC浆料,ZrB2‑SiC浆料挤出固化得到连续ZrB2‑SiC陶瓷纤维;ZrB2粉体、SiC粉体与Graphene分散在去离子水中得到ZrB2‑SiC‑Graphene浆料;连续ZrB2‑SiC陶瓷纤维涂覆ZrB2‑SiC‑Graphene浆料并烘干,进行预压、高温排胶和热压烧结。本发明解决了单轴排列的ZrB2基纤维独石陶瓷的面内各向异性的问题,抗损伤容限得到提升。本发明适用于制备硼化锆基超高温独石结构陶瓷。

    一种制备高损伤容限的面内各向同性的硼化锆基超高温独石结构陶瓷的方法

    公开(公告)号:CN109293384A

    公开(公告)日:2019-02-01

    申请号:CN201811287055.X

    申请日:2018-10-31

    Abstract: 一种制备高损伤容限的面内各向同性的硼化锆基超高温独石结构陶瓷的方法,涉及一种硼化锆基超高温独石陶瓷材料的制备方法。目的是解决ZrB2基超高温陶瓷抗损伤容限差及ZrB2基纤维独石陶瓷存在严重面内各向异性的问题。制备方法:将聚醚砜溶解在N-甲基吡咯烷酮中,并与ZrB2粉体和SiC粉体进行球磨混料得到ZrB2-SiC浆料,ZrB2-SiC浆料挤出固化得到连续ZrB2-SiC陶瓷纤维;ZrB2粉体、SiC粉体与Graphene分散在去离子水中得到ZrB2-SiC-Graphene浆料;连续ZrB2-SiC陶瓷纤维涂覆ZrB2-SiC-Graphene浆料并烘干,进行预压、高温排胶和热压烧结。本发明解决了单轴排列的ZrB2基纤维独石陶瓷的面内各向异性的问题,抗损伤容限得到提升。本发明适用于制备硼化锆基超高温独石结构陶瓷。

    一种碳化硅纳米线/石墨烯泡沫电磁波吸收复合材料的制备方法

    公开(公告)号:CN108264884A

    公开(公告)日:2018-07-10

    申请号:CN201810042998.X

    申请日:2018-01-16

    Abstract: 一种碳化硅纳米线/石墨烯泡沫电磁波吸收复合材料的制备方法,它涉及一种石墨烯泡沫电磁波吸收材料的制备方法。本发明是要解决现有石墨烯泡沫力学、热学、电磁波吸收性能差的技术问题。本发明:一、制备氧化石墨烯分散液;二、制备石墨烯水凝胶;三、制备石墨烯乙醇凝胶;四、制备石墨烯泡沫;五、化学气相浸渗。本发明具有以下优点:1、本发明方法的制备的石墨烯泡沫质量轻、强度高;2、SiC纳米线的引入使石墨烯泡沫的压缩强度、热稳定性和电磁波吸收性能得到大幅度提升。本发明应用于电磁波吸收材料的制备。

Patent Agency Ranking