-
公开(公告)号:CN114919587B
公开(公告)日:2024-08-20
申请号:CN202210597032.9
申请日:2022-05-30
Applicant: 吉林大学
IPC: B60W40/10 , B60W40/105 , B60W40/107 , B60W40/109 , B60W40/112
Abstract: 本发明实施例涉及汽车控制技术领域,具体公开了一种车辆的横纵向运动协调控制方法。本发明实施例通过根据驾驶员加速踏板/制动踏板和方向盘操作指令,确定驾驶员的期望运动趋势及其变化率,其次根据期望和实际运动趋势及其变化率,计算期望整车转向运动中心位置,在此基础上,以各车轮转向中心交汇于期望整车转向运动中心为依据,确定各车轮期望转角和期望转速,并以跟踪期望转速为目标计算各车轮期望转矩。本发明提供的车辆的横纵向运动协调控制方法,能够实现四轮独立转向、驱动车辆的各车轮扭矩与转角的最优分解,且适用于车辆的各种运动模式,如前轮转向、后轮转向、四轮转向、原地转向、蟹行等。
-
公开(公告)号:CN117864237A
公开(公告)日:2024-04-12
申请号:CN202410207021.4
申请日:2024-02-26
Applicant: 吉林大学
IPC: B62D5/04
Abstract: 本发明公开了一种基于回正速度控制的电动助力转向系统回正控制方法,由撒手回正状态判断模块、回正时间确定模块、回正速度确定模块以及回正补偿力矩确定模块组成。撒手回正状态判断模块根据转向盘力矩、转向盘转角和转速信号进行判断,当同时满足以下条件时,判断为撒手回正状态。本发明通过设计回正时间确定模块,根据撒手时刻的转向盘转角和车速确定回正时间,更满足驾驶员期望,通过对驾驶员扶着回正/撒手回正的判断及由此对回正速度的修正,使得各个工况下的回正性能更加符合驾驶员期望。
-
公开(公告)号:CN110001771B
公开(公告)日:2024-02-27
申请号:CN201910347928.X
申请日:2019-04-28
Applicant: 吉林大学
Abstract: 本发明公开了一种全解耦线控液压转向系统,属于汽车转向系统技术领域,本发明的目的是提供一套对电机性能要求较低,结构更为紧凑,能实现转向全解耦和失效保护的功能、具有主动转向快速、角度调节精确的线控转向系统;该系统由方向盘、转向管柱、解耦式转向模拟器、高压回油机构、齿轮助力机构、齿轮齿条转向机、左前车轮、右前车轮和电子控制单元组成;在解耦式转向模拟器中设置的动啮合齿轮可以选择性地与转向模拟器齿轮或转向柱啮合,同时配合齿轮助力机构所拥有的机械转向和液压转向两种方式,既实现了驾驶员与转向系统的全解耦,同时系统断电失效时,方向盘与转向车轮机械连接,保障了驾驶的安全性。
-
公开(公告)号:CN114781071A
公开(公告)日:2022-07-22
申请号:CN202210611976.7
申请日:2022-05-31
Applicant: 吉林大学
IPC: G06F30/15 , G06F30/20 , G06F119/14
Abstract: 本发明公开了一种商用车全浮式驾驶室建模方法由由驾驶室Motion运动模块、Motion对Ride的影响模块、驾驶室Ride运动模块、Ride对Motion的影响模块组成;驾驶室Motion运动模块是指根据整车的纵向、横向、横摆运动求解驾驶室的纵向、横向、横摆运动;Motion对Ride的影响模块是根据驾驶室的纵向、横向、横摆运动估算车架对驾驶室悬置的边界力,然后再通过RC/PC理论和二力杆假设;本方法方便准确,基于K&C试验获取的试验曲线对驾驶室悬置进行基于特性的建模,建模过程方便,算力要求不高,仿真结果准确。本方法的架构系统全面,考虑了包括柔性变形在内的多种情况,适用范围广,并且可以对其他类似的机构进行类似思路的建模。
-
公开(公告)号:CN114781071B
公开(公告)日:2025-04-11
申请号:CN202210611976.7
申请日:2022-05-31
Applicant: 吉林大学
IPC: G06F30/15 , G06F30/20 , G06F119/14
Abstract: 本发明公开了一种商用车全浮式驾驶室建模方法由由驾驶室Motion运动模块、Motion对Ride的影响模块、驾驶室Ride运动模块、Ride对Motion的影响模块组成;驾驶室Motion运动模块是指根据整车的纵向、横向、横摆运动求解驾驶室的纵向、横向、横摆运动;Motion对Ride的影响模块是根据驾驶室的纵向、横向、横摆运动估算车架对驾驶室悬置的边界力,然后再通过RC/PC理论和二力杆假设;本方法方便准确,基于K&C试验获取的试验曲线对驾驶室悬置进行基于特性的建模,建模过程方便,算力要求不高,仿真结果准确。本方法的架构系统全面,考虑了包括柔性变形在内的多种情况,适用范围广,并且可以对其他类似的机构进行类似思路的建模。
-
公开(公告)号:CN116215549A
公开(公告)日:2023-06-06
申请号:CN202310349310.3
申请日:2023-04-04
Applicant: 吉林大学
Abstract: 本发明公开了一种涉及转向盘交互反馈的疲劳监测方法,涉及车辆技术领域,该方法包括如下步骤:在一段时间内,安装在转向盘上的角传感器未检测到大于设定阈值的转向角度,认为驾驶员未操作转向盘;智能车载卫星设备定位本车位置,获取当前的路况,并判断一般驾驶员通过当前路段是否需要操作转向盘;若判断否,则认为驾驶员处于非疲劳驾驶状态;若判断是,提示驾驶员进行交互动作;在规定的时间内,驾驶员成功完成交互操作,判断驾驶员未处于疲劳驾驶状态;若驾驶员未完成交互,则认定驾驶员处于疲劳驾驶状态。本发明能够通过与驾驶员的交互实时监测驾驶员疲劳状态,监测准确,并提醒驾驶员及时休息,以此达到避免因疲劳驾驶发生意外的目的。
-
公开(公告)号:CN107672669A
公开(公告)日:2018-02-09
申请号:CN201711111539.4
申请日:2017-11-13
Applicant: 吉林大学
Abstract: 本发明公开了一种全解耦线控转向系统,目的是解决传统EPS中电机噪声大、且无法实现智能汽车所需的转向全解耦的功能;解决部分线控转向系统中取消方向盘与转向车轮之间的机械连接致使系统断电失效时无法完成失效转向;解决部分线控制动系统采用电机作为线控转向动力源时存在噪声大、响应速度慢等问题;解决部分线控制动系统采用液体或气体作为转向介质时存在泄漏、故障率增加、维护困难等问题。本发明采用电磁力来驱动转向杆运动使汽车快速精准地完成转向动作的线控转向系统,该线控转向系统能实现驾驶员与转向系统的全解耦,具有失效保护的功能,摆脱了电机、液体、气体的束缚,结构简单,集成度高。
-
公开(公告)号:CN114919587A
公开(公告)日:2022-08-19
申请号:CN202210597032.9
申请日:2022-05-30
Applicant: 吉林大学
IPC: B60W40/10 , B60W40/105 , B60W40/107 , B60W40/109 , B60W40/112
Abstract: 本发明实施例涉及汽车控制技术领域,具体公开了一种车辆的横纵向运动协调控制方法。本发明实施例通过根据驾驶员加速踏板/制动踏板和方向盘操作指令,确定驾驶员的期望运动趋势及其变化率,其次根据期望和实际运动趋势及其变化率,计算期望整车转向运动中心位置,在此基础上,以各车轮转向中心交汇于期望整车转向运动中心为依据,确定各车轮期望转角和期望转速,并以跟踪期望转速为目标计算各车轮期望转矩。本发明提供的车辆的横纵向运动协调控制方法,能够实现四轮独立转向、驱动车辆的各车轮扭矩与转角的最优分解,且适用于车辆的各种运动模式,如前轮转向、后轮转向、四轮转向、原地转向、蟹行等。
-
公开(公告)号:CN113147734A
公开(公告)日:2021-07-23
申请号:CN202110554820.5
申请日:2021-05-21
Applicant: 吉林大学
Abstract: 本发明公开的属于汽车控制策略技术领域,具体为一种基于驾驶员纵向加速意图的闭环控制方法,其包括以下步骤:S1:通过信号实时采集模块,采集当前车辆的纵向速度ux、当前加速踏板开度aped以及当前实际的整车纵向加速度ax。该基于驾驶员纵向加速意图的闭环控制方法,建立了考虑驾驶员多种操作意图的加速踏板开度‑加速度需求Pedal Map图,突破了传统的加速踏板开度‑扭矩需求的Pedal Map图的思维限制,使加速踏板开度直接对应加速度,更符合驾驶员的操作意图,并且基于驾驶员的加速度需求,利用加速度需求做为中间变量,实现了车辆的闭环控制,提高了驾驶一致性。
-
公开(公告)号:CN112896299A
公开(公告)日:2021-06-04
申请号:CN202110234948.3
申请日:2021-03-03
Applicant: 吉林大学
IPC: B62D5/04 , B62D6/00 , B62D101/00 , B62D137/00
Abstract: 本发明涉及汽车技术领域,尤其涉及一种基于转向运动闭环的电动助力转向系统控制策略,所述控制策略包括:设计转向风格模块、期望小齿轮转角确定模块、期望小齿轮处转向阻力矩确定模块;其中,转向风格模块通过转向盘力矩确定期望转向运动强度;期望小齿轮转角确定模块通过实际与期望转向运动强度确定期望小齿轮转角;期望小齿轮处转向阻力矩确定模块通过实际与期望小齿轮转角确定等效到小齿轮处转向阻力矩;进而确定电动助力转向系统的目标助力矩。有益效果是:统一了EPS的助力控制、阻尼控制和回正控制模式,无需复杂的切换逻辑及门限值,降低了EPS产品开发后期实车场地试验的难度与工作量,缩短了EPS开发周期,提供一致的转向感觉。
-
-
-
-
-
-
-
-
-