-
公开(公告)号:CN110212078B
公开(公告)日:2020-10-27
申请号:CN201910514858.2
申请日:2019-06-14
Applicant: 厦门大学
Abstract: 本发明涉及光电子、半导体激光技术领域,特别地涉及一种电注入微盘谐振腔发光器件及其制备方法。本发明公开了一种电注入微盘谐振腔发光器件及其制备方法,其中电注入微盘谐振腔发光器件包括半导体微盘、金属支撑柱和金属支撑衬底,半导体微盘通过金属支撑柱支撑在金属支撑衬底上,半导体微盘的边缘突出于金属支撑柱的侧壁而形成悬空结构。本发明很好地解决了具有边缘悬空结构微盘谐振腔的电流注入难题,且相比于传统微盘谐振腔发光器件中的Si等其他半导体支撑材料,金属支撑柱能更好地改善器件的散热特性;金属支撑柱与金属支撑衬底可以通过电镀的方式制备,工艺简单,所有制备工艺与标准半导体制备工艺兼容,满足大规模光电集成的需要。
-
公开(公告)号:CN111370437B
公开(公告)日:2023-03-14
申请号:CN202010321109.0
申请日:2020-04-22
Applicant: 厦门大学
IPC: H01L27/146
Abstract: 本发明公开了一种基于金属氧化物薄膜晶体管的集成探测基板,包括:衬底、光电探测阵列和设置于同一衬底上的显示驱动阵列和TFT信号读写及处理电路阵列;所述显示驱动阵列和TFT信号读写及处理电路阵列的结构单元由N沟道和/或P沟道的第一TFT结构单元组成;所述光电探测阵列,包括成阵列分布的光电探测单元,所述光电探测单元由P沟道的第二TFT结构单元组成,形成于TFT信号读写及处理电路阵列上,并通过互连金属和信号读取单元连接,第二结构单元没有第一结构单元中的钝化层。本发明将蓝光探测、显示驱动、TFT读写电路和TFT信号处理电路等多种应用高度集成,基于同种材料、同种器件结构,将极大简化工艺步骤,降低制造成本。
-
公开(公告)号:CN112133801A
公开(公告)日:2020-12-25
申请号:CN202011022463.X
申请日:2020-09-25
Applicant: 厦门大学
Abstract: 本发明涉及半导体照明、光电子技术领域。本发明公开了一种氮化镓基谐振腔发光二极管及其制备方法,其中,氮化镓基谐振腔发光二极管从底部到顶部依次包括衬底、下反射镜、透明导电层、P型层、有源区、N型层、N电极和上反射镜,下反射镜由介质膜DBR阵列和金属反射镜构成,介质膜DBR阵列由介质膜DBR单元彼此间隔排布构成,金属反射镜设置在介质膜DBR单元之间的间隙中,介质膜DBR单元和金属反射镜的上表面均与透明导电层的下表面接触。本发明能够同时兼顾谐振腔发光二极管晶体质量、下反射镜在全波段的高反射率、良好的电流注入以及良好的器件散热,且制备工艺简单,所有制备工艺与标准半导体制备工艺兼容,满足大规模光电集成的需要。
-
公开(公告)号:CN107404066A
公开(公告)日:2017-11-28
申请号:CN201710609195.3
申请日:2017-07-25
Applicant: 厦门大学
CPC classification number: H01S5/183 , H01S5/02438
Abstract: 全介质膜DBR结构氮化镓面发射激光器的制备方法,涉及激光器。在蓝宝石衬底上外延具有p-down结构的激光器外延层;在外延片上制作图形化的介质膜DBR,然后磁控溅射n型电极;电镀铜作为替代支撑衬底并激光剥离去除蓝宝石衬底;生长SiO2电流限制层及ITO电流扩展层;溅射p型电极、制作图形化的介质膜上DBR并分离器件完成器件的制备。实现了具有铜衬底、SiO2电流限制层位于器件上表面的全介质膜GaN基面发射激光器。SiO2电流限制层位于有源区上侧避免了位于有源区下侧与衬底之间所造成的有源区热量拥堵,散热差的问题,可以改善器件的散热性能并提高光功率。
-
公开(公告)号:CN107123928A
公开(公告)日:2017-09-01
申请号:CN201710326448.6
申请日:2017-05-10
Applicant: 厦门大学
IPC: H01S5/343
Abstract: 一种基于氮化镓材料的双波长同时发射激光器,涉及发射激光器。采用垂直内腔接触结构,结构从下到上包括了衬底、金属层、下分布布拉格反射镜、电流限制层、GaN基外延层、上电极、上分布布拉格反射镜,所述电流限制层中包含用于电流扩展的ITO透明导电孔,所述GaN基外延层包含n型层和p型层以及有源区,其中有源区为量子阱内嵌量子点结构。利用垂直谐振腔及量子阱内嵌量子点的有源结构,获得了双波长同时发射的半导体激光器。本发明具有结构简单、集成度高、光束方向集中、发射波长易于控制等特点,在实现多色半导体激光器光源和双波长合成干涉测量等领域中有着广泛的应用前景。
-
公开(公告)号:CN107123928B
公开(公告)日:2019-09-20
申请号:CN201710326448.6
申请日:2017-05-10
Applicant: 厦门大学
IPC: H01S5/343
Abstract: 一种基于氮化镓材料的双波长同时发射激光器,涉及发射激光器。采用垂直内腔接触结构,结构从下到上包括了衬底、金属层、下分布布拉格反射镜、电流限制层、GaN基外延层、上电极、上分布布拉格反射镜,所述电流限制层中包含用于电流扩展的ITO透明导电孔,所述GaN基外延层包含n型层和p型层以及有源区,其中有源区为量子阱内嵌量子点结构。利用垂直谐振腔及量子阱内嵌量子点的有源结构,获得了双波长同时发射的半导体激光器。本发明具有结构简单、集成度高、光束方向集中、发射波长易于控制等特点,在实现多色半导体激光器光源和双波长合成干涉测量等领域中有着广泛的应用前景。
-
公开(公告)号:CN110212078A
公开(公告)日:2019-09-06
申请号:CN201910514858.2
申请日:2019-06-14
Applicant: 厦门大学
Abstract: 本发明涉及光电子、半导体激光技术领域,特别地涉及一种电注入微盘谐振腔发光器件及其制备方法。本发明公开了一种电注入微盘谐振腔发光器件及其制备方法,其中电注入微盘谐振腔发光器件包括半导体微盘、金属支撑柱和金属支撑衬底,半导体微盘通过金属支撑柱支撑在金属支撑衬底上,半导体微盘的边缘突出于金属支撑柱的侧壁而形成悬空结构。本发明很好地解决了具有边缘悬空结构微盘谐振腔的电流注入难题,且相比于传统微盘谐振腔发光器件中的Si等其他半导体支撑材料,金属支撑柱能更好地改善器件的散热特性;金属支撑柱与金属支撑衬底可以通过电镀的方式制备,工艺简单,所有制备工艺与标准半导体制备工艺兼容,满足大规模光电集成的需要。
-
公开(公告)号:CN107404066B
公开(公告)日:2019-06-04
申请号:CN201710609195.3
申请日:2017-07-25
Applicant: 厦门大学
Abstract: 全介质膜DBR结构氮化镓面发射激光器的制备方法,涉及激光器。在蓝宝石衬底上外延具有p‑down结构的激光器外延层;在外延片上制作图形化的介质膜DBR,然后磁控溅射n型电极;电镀铜作为替代支撑衬底并激光剥离去除蓝宝石衬底;生长SiO2电流限制层及ITO电流扩展层;溅射p型电极、制作图形化的介质膜上DBR并分离器件完成器件的制备。实现了具有铜衬底、SiO2电流限制层位于器件上表面的全介质膜GaN基面发射激光器。SiO2电流限制层位于有源区上侧避免了位于有源区下侧与衬底之间所造成的有源区热量拥堵,散热差的问题,可以改善器件的散热性能并提高光功率。
-
公开(公告)号:CN108521075A
公开(公告)日:2018-09-11
申请号:CN201810315250.2
申请日:2018-04-10
Applicant: 厦门大学
IPC: H01S5/343
CPC classification number: H01S5/34333
Abstract: 一种基于蓝光InGaN量子阱的绿光发射激光器,涉及绿光发射激光器。从下至上包括铜衬底、下分布布拉格反射镜、p型Cr/Au电极、ITO透明导电层、SiO2电流限制层、GaN基外延层、n型Cr/Au电极和上分布布拉格反射镜;所述GaN基外延层包括P型GaN、N型GaN和蓝光InGaN/GaN量子阱;所述上分布布拉格反射镜和下分布布拉格反射镜高反带需覆盖整个增益谱范围,反射率达到99%及以上,材料组合采用TiO2/SiO2、Ta2O5/SiO2或Ti3O5/SiO2。所述蓝光InGaN/GaN量子阱中,势阱InXGa1-XN层InN含量x在0.16~0.22之间,势垒为GaN层。
-
公开(公告)号:CN106785909A
公开(公告)日:2017-05-31
申请号:CN201710064594.6
申请日:2017-02-04
Applicant: 厦门大学
CPC classification number: H01S5/18397 , H01S5/187
Abstract: 用于全色显示照明的垂直腔面发射激光器阵列,涉及半导体激光器。从下至上设有散热铜衬底、键合层、电流扩展与P型电极、电流限制层、P型GaN层、量子点有源区、N型GaN层和N型电极;所述N型GaN层、量子点有源区和P型GaN层依次生长在散热铜衬底上,电流限制层沉积在P型GaN层上,在电流限制层中开设P型电流注入孔,电流扩展与P型电极生长在注入孔中,在电流扩展与P型电极中沉积有P型电极和底部分布布拉格反射镜,键合层键合于底部分布布拉格反射镜与散热铜衬底之间,在N型GaN层上沉积N型电极和顶部分布布拉格反射镜,底部分布布拉格反射镜与顶部分布布拉格反射镜之间构成谐振腔。
-
-
-
-
-
-
-
-
-