-
公开(公告)号:CN115295884B
公开(公告)日:2024-12-03
申请号:CN202210859436.0
申请日:2022-07-21
Applicant: 厦门大学
IPC: H01M10/0569 , H01M10/054
Abstract: 本发明公开了一种有机系可充镁电池电解液及其制备方法和电池。该电解质包括电解质盐和非水溶剂;所述非水溶剂为单一组分有机溶剂或多组分有机溶剂,所述单一组分有机溶剂为3‑甲氧基丙胺、N‑甲基‑3‑甲氧基丙胺或N,N‑二甲基‑3‑甲氧基丙胺。本发明从溶剂成分调控的角度出发,通过调节电解液中的溶剂组分以调控镁离子溶剂化结构,解决电解液与镁金属负极的不兼容而导致过电位较大的问题,采用该电解质的镁电池具有优异的镁金属负极电化学性能。
-
公开(公告)号:CN114195935B
公开(公告)日:2023-07-04
申请号:CN202010987630.8
申请日:2020-09-18
Applicant: 厦门大学
IPC: C08F220/58 , C08F212/36 , C08F2/48 , H01M10/36 , H01M6/04
Abstract: 本发明公开了一种聚阴离子锌盐水凝胶电解质及锌电池体系,该电解质为有机酸锌盐聚合物,由有机物单体、锌盐、交联剂和引发剂经聚合反应制备而成;其中,所述有机物单体的浓度为0.1~10mol/L,有机物单体和锌盐的物质的量浓度比值为0.1:1~10:1;所述有机物单体含有碳碳双键,并含有磺酸基、酰亚胺基、磺酰亚胺基、羧酸基、硼酸基中的至少一种基团;所述锌盐为可溶性锌盐。该锌电池体系采用聚阴离子锌盐水凝胶电解质,通过固定电解液中的阴离子,减少副反应的发生,抑制锌枝晶的生长,实现锌电池体系的电化学性能和循环稳定性的提升。
-
公开(公告)号:CN112713295B
公开(公告)日:2022-04-26
申请号:CN202011632410.X
申请日:2020-12-31
Applicant: 厦门大学
IPC: H01M8/2432 , H01M8/2457 , H01M8/0263 , H01M8/04014
Abstract: 本发明一种蛇形气道平板式固体氧化物燃料电池电堆,包括括上集流板、下集流板和设置在所述上集流板和下集流板之间的堆叠结构;所述堆叠结构包括至少两个双极板、设置在所述双极板与集流板之间的电池片和密封件;所述双极板具有阳极气道和阴极气道,在所述双极板的阳极气道侧有第一阳极气体密封件,在所述双极板的阴极气道侧有第一阴极气体密封件;所述电池片包括单电池和单电池框架;在所述电堆上分别设置有氧化气体和燃料气体的进气通道和出气通道。本发明有利于促进冷热流体间的热交换,降低冷流体入口端和热流体出口端的温度,同时有利于提高燃料气体和氧化气体的利用率,有利于促进燃料气体和氧化气体在所述电池片中的扩散。
-
公开(公告)号:CN113764709A
公开(公告)日:2021-12-07
申请号:CN202011632255.1
申请日:2020-12-31
Applicant: 厦门大学
IPC: H01M8/1231 , H01M8/04007 , H01M8/0606
Abstract: 本发明提供一种基于复合材料的二次燃料电池,所述二次燃料电池能够有效地加热且能够重复使用。本发明的二次燃料电池具有:固体电解质体(2);负极(3),形成于固体电解质体(2)的一个面;正极(1),形成于固体电解质体(2)的另一个面上;负极燃料物质体(5);加热部(10),用于将二次燃料电池外壳(4)、固体电解质体(2)和负极燃料物质体(5)加热维持在预定温度以上;压力吸收部(9),用于吸收二次燃料电池内由产生水蒸气引起的压力变动;三维有序层状多孔骨架(11),用于抑制负极燃料物质体(5)烧结,并在负极燃料物质体(5)中形成气体扩散通道。
-
公开(公告)号:CN112853529B
公开(公告)日:2021-11-19
申请号:CN202011623683.8
申请日:2020-12-31
Applicant: 厦门大学
Abstract: 本发明涉及一种镍基造孔剂及其在燃料电池中的应用,所述造孔剂为采用聚乙烯醇、二水乙酸镍为原料制备的Ni‑PVA静电纺丝纤维,其制备方法为将二水乙酸镍、PVA溶解于溶剂中制成前驱液,然后在高压静电纺丝机上操作,转动滚筒收集器收集Ni‑PVA静电纺丝纤维。所述Ni‑PVA静电纺丝纤维制备燃料电池阳极的方法包括如下步骤:制备燃料电极初始粉、制备Ni‑PVA静电纺丝纤维、将燃料电极初始粉和Ni‑PVA静电纺丝纤维混合、制备燃料电极自支撑体。本发明在PVA静电纺丝前驱液里引入镍元素,改善了PVA纤维与含镍的燃料电极初始粉之间的电化学关系及形貌,进一步加强电化学反应区间的电化学活性,提升燃料电池的输出性能,减缓燃料电池比容量的衰减。
-
公开(公告)号:CN112853540A
公开(公告)日:2021-05-28
申请号:CN202011623707.X
申请日:2020-12-31
Applicant: 厦门大学
Abstract: 本发明涉及一种钛基造孔剂及其在燃料电池中的应用,所述造孔剂为采用钛酸丁酯或钛酸四丁酯、过氧乙酰硝酸酯、聚乙烯吡络烷酮为原料制备的TiO2‑PAN‑PVP同轴复合纤维,其制备方法为将钛酸丁酯或钛酸四丁酯制备为TiO2溶胶,过氧乙酰硝酸酯、聚乙烯吡络烷酮制备为PAN‑PVP混合溶液,然后在同轴高压静电纺丝机上操作,内针孔放置PAN‑PVP混合溶液,外针孔放置TiO2溶胶,转动滚筒收集器收集TiO2‑PAN‑PVP同轴复合纤维,在制备阳极过程中,通过高压加温去除纤维后,TiO2存留在孔道内,有助于改善阳极在孔内部的连接;TiO2为纳米颗粒,比表面积较大,能够增大电化学反应区;整体降低电池的活化极化,降低电池内阻,加速物质扩散,从而最终提升电池的输出性能,减缓比容量的衰减。
-
公开(公告)号:CN112713295A
公开(公告)日:2021-04-27
申请号:CN202011632410.X
申请日:2020-12-31
Applicant: 厦门大学
IPC: H01M8/2432 , H01M8/2457 , H01M8/0263 , H01M8/04014
Abstract: 本发明一种蛇形气道平板式固体氧化物燃料电池电堆,包括括上集流板、下集流板和设置在所述上集流板和下集流板之间的堆叠结构;所述堆叠结构包括至少两个双极板、设置在所述双极板与集流板之间的电池片和密封件;所述双极板具有阳极气道和阴极气道,在所述双极板的阳极气道侧有第一阳极气体密封件,在所述双极板的阴极气道侧有第一阴极气体密封件;所述电池片包括单电池和单电池框架;在所述电堆上分别设置有氧化气体和燃料气体的进气通道和出气通道。本发明有利于促进冷热流体间的热交换,降低冷流体入口端和热流体出口端的温度,同时有利于提高燃料气体和氧化气体的利用率,有利于促进燃料气体和氧化气体在所述电池片中的扩散。
-
公开(公告)号:CN119108626A
公开(公告)日:2024-12-10
申请号:CN202310672648.2
申请日:2023-06-08
Applicant: 厦门大学
IPC: H01M10/0567 , H01M10/054 , H01M4/134
Abstract: 本发明公开了一种基于胺类添加剂可充镁电池的酯类和腈类电解液和电池。该电解液由电解质盐和非水溶剂组成,非水溶剂由主溶剂和添加剂组成,所述主溶剂为酯类有机溶剂或腈类有机溶剂,所述添加剂为胺类化合物;其中,所述电解质盐在电解液中的浓度范围为0.01mol/L至所述电解质盐的最大溶解度,所述添加剂占主溶剂的体积为1%~40%。本发明通过添加剂改性电解液,改善了电解液的溶剂化结构并保护镁金属负极,大大降低了镁金属负极在酯类和腈类溶剂中的沉积溶解过电位,有利于构建基于酯类或腈类的镁金属电池体系。同时实现了电解液正负极和电解液的相兼容性,显著拓宽了电解液的电化学窗口和正极材料的适用范围,具有大规模的应用前景和巨大的商业开发价值。
-
公开(公告)号:CN115360431B
公开(公告)日:2024-08-30
申请号:CN202210982249.1
申请日:2022-08-16
Applicant: 厦门大学
IPC: H01M10/058 , H01M10/0564 , H01M10/0525
Abstract: 本发明涉及一种聚丁二烯基高电导率聚合物电解质的制备方法及其在电池和电容器领域的应用。采用端位连接羧基等不同活性基团的1,2聚合短链聚丁二烯为基体原料,先缩合再在侧链接枝,得到主链为含有酯键或醚键或酰胺键的柔性长链段、侧链含离子解离与传导能力强的聚酯链段或聚醚链段的聚合物,添加电解质锂盐后,即得同时具备高力学性能与高电导率的非单离子导体型聚合物电解质;侧链接枝反应物包括含双键或含巯基的锂盐单体时,可直接得单离子导体型聚合物电解质。该聚合物电解质可以取代现有隔膜液态电解质体系或PEO基聚合物电解质体系,制备方法简单。以该聚合物电解质为基础的电池同时具有高安全性能和高倍率性能。
-
公开(公告)号:CN113764698B
公开(公告)日:2024-01-09
申请号:CN202011625660.0
申请日:2020-12-31
Applicant: 厦门大学
IPC: H01M8/04082 , H01M8/04089 , C01B3/00
Abstract: 本发明提供一种储氢燃料及其制备方法,涉及二次固体氧化物燃料电池(SOFC)。其特征在于包括金属燃料,由氧化物与催化剂构成的第一包覆层和碳构成的第二包覆层。本发明基于多层包覆策略,通过催化剂的催化作用与储氢燃料内部气体通道的调控,有效维持了储氢燃料的高温稳定性、提高了储氢燃料的反应动力学,从而提升了电池的功率和循环稳定性。
-
-
-
-
-
-
-
-
-