-
公开(公告)号:CN107256342A
公开(公告)日:2017-10-17
申请号:CN201710454587.7
申请日:2017-06-15
Applicant: 南通大学
IPC: G06F19/00
Abstract: 本发明公开了一种用于电子病历知识约简效能评估的多种群协同熵级联方法。该方法首先利用云计算中Map操作与Reduce操作将大规模电子病历数据集划分成不同的电子病历优化数据子集;接着构建相邻进化种群相似度矩阵,利用进化种群协同熵设计知识约简效能计算方法;然后分析影响电子病历知识约简效能的进化种群分布规律,构造一种级联评估指标矩阵并进行矩阵优化;最后评估电子病历知识约简效能评估精度,输出电子病历知识约简效能最优评估精度。该方法对云计算环境下大规模电子病历知识约简定性定量化智能分析以及相关疾病辅助诊断疗效评估具有较好的应用价值。
-
公开(公告)号:CN108986872B
公开(公告)日:2021-05-07
申请号:CN201810642497.5
申请日:2018-06-21
Applicant: 南通大学
Abstract: 本发明公开了一种用于大数据电子病历约简的多粒度属性权重Spark方法。该方法首先在Hadoop分布式文件系统中将大数据电子病历集划分成不同的条件属性作业和决策属性作业;然后设计基于改进MapReduce作业协同结构的Spark模型,将电子病历条件属性作业并行化处理;其次在Hadoop分布式文件系统中构建多粒度属性权重Spark方法用于电子病历属性快速约简,从而求得大数据电子病历属性约简最优特征集;最后将大数据电子病历属性约简特征集R1,R2,…,Rn存储至Hadoop分布文件系统中,为相关疾病的临床诊断和治疗提供重要的智能诊断知识依据。
-
公开(公告)号:CN108986872A
公开(公告)日:2018-12-11
申请号:CN201810642497.5
申请日:2018-06-21
Applicant: 南通大学
Abstract: 本发明公开了一种用于大数据电子病历约简的多粒度属性权重Spark方法。该方法首先在Hadoop分布式文件系统中将大数据电子病历集划分成不同的条件属性作业和决策属性作业;然后设计基于改进MapReduce作业协同结构的Spark模型,将电子病历条件属性作业并行化处理;其次在Hadoop分布式文件系统中构建多粒度属性权重Spark方法用于电子病历属性快速约简,从而求得大数据电子病历属性约简最优特征集;最后将大数据电子病历属性约简特征集R1,R2,…,Rn存储至Hadoop分布文件系统中,为相关疾病的临床诊断和治疗提供重要的智能诊断知识依据。
-
公开(公告)号:CN108446740A
公开(公告)日:2018-08-24
申请号:CN201810262763.1
申请日:2018-03-28
Applicant: 南通大学
IPC: G06K9/62
CPC classification number: G06K9/6239 , G06K9/622
Abstract: 本发明公开了一种用于脑影像病历特征提取的多层一致协同方法,首先构建一种多层协同MapReduce模型进行不可分割相关脑影像病历特征的标识,将具有多个相关特征的脑病历进行有效分类;然后设计一种脑影像病历特征一致相容性聚合方法,使协同模因组提取的脑影像病历特征局部解和全局优势解能达到有效平衡;其次采用多决策一致性优化矩阵进一步检测协同模因组的非合作MapReduce行为,从而有效取得特征集的一致纳什均衡;最后评估脑影像病历特征提取的精度,输出最优特征选择集。本发明为相关疾病的临床诊断和治疗提供重要的影像特征依据。
-
公开(公告)号:CN108446740B
公开(公告)日:2019-06-14
申请号:CN201810262763.1
申请日:2018-03-28
Applicant: 南通大学
IPC: G06K9/62
Abstract: 本发明公开了一种用于脑影像病历特征提取的多层一致协同方法,首先构建一种多层协同MapReduce模型进行不可分割相关脑影像病历特征的标识,将具有多个相关特征的脑病历进行有效分类;然后设计一种脑影像病历特征一致相容性聚合方法,使协同模因组提取的脑影像病历特征局部解和全局优势解能达到有效平衡;其次采用多决策一致性优化矩阵进一步检测协同模因组的非合作MapReduce行为,从而有效取得特征集的一致纳什均衡;最后评估脑影像病历特征提取的精度,输出最优特征选择集。本发明为相关疾病的临床诊断和治疗提供重要的影像特征依据。
-
公开(公告)号:CN107256342B
公开(公告)日:2019-06-07
申请号:CN201710454587.7
申请日:2017-06-15
Applicant: 南通大学
IPC: G16H50/70
Abstract: 本发明公开了一种用于电子病历知识约简效能评估的多种群协同熵级联方法。该方法首先利用云计算中Map操作与Reduce操作将大规模电子病历数据集划分成不同的电子病历优化数据子集;接着构建相邻进化种群相似度矩阵,利用进化种群协同熵设计知识约简效能计算方法;然后分析影响电子病历知识约简效能的进化种群分布规律,构造一种级联评估指标矩阵并进行矩阵优化;最后评估电子病历知识约简效能评估精度,输出电子病历知识约简效能最优评估精度。该方法对云计算环境下大规模电子病历知识约简定性定量化智能分析以及相关疾病辅助诊断疗效评估具有较好的应用价值。
-
-
-
-
-