一种基于多源数据和神经网络模型的PM2.5反演方法

    公开(公告)号:CN111723525B

    公开(公告)日:2023-10-31

    申请号:CN202010582321.2

    申请日:2020-06-23

    Applicant: 南通大学

    Abstract: 本发明公开了一种基于多源数据和神经网络模型的PM2.5反演方法,获取Landsat 8影像数据,PM2.5监测数据,气象数据,高程数据和城市特征数据;提取Landsat 8影像特征及其衍生特征;提取风速、温度、降水和相对湿度等与PM2.5具有相关性的气象特征;提取地形特征以及工厂密度、道路密度、人口密度和人均GDP等城市特征;搭建神经网络模型,对数据集进行训练;对模型进行优化;使用反演模型得到PM2.5反演结果;利用逐小时气象数据实时更新反演结果并利用逐小时空气质量数据对反演结果进行纠偏。本发明能够较准确的反演出PM2.5实时浓度,得到PM2.5的空间分布规律,为需要高精度PM2.5分布数据的研究提供基础数据。

    一种基于多源数据和神经网络模型的PM2.5反演方法

    公开(公告)号:CN111723525A

    公开(公告)日:2020-09-29

    申请号:CN202010582321.2

    申请日:2020-06-23

    Applicant: 南通大学

    Abstract: 本发明公开了一种基于多源数据和神经网络模型的PM2.5反演方法,获取Landsat 8影像数据,PM2.5监测数据,气象数据,高程数据和城市特征数据;提取Landsat 8影像特征及其衍生特征;提取风速、温度、降水和相对湿度等与PM2.5具有相关性的气象特征;提取地形特征以及工厂密度、道路密度、人口密度和人均GDP等城市特征;搭建神经网络模型,对数据集进行训练;对模型进行优化;使用反演模型得到PM2.5反演结果;利用逐小时气象数据实时更新反演结果并利用逐小时空气质量数据对反演结果进行纠偏。本发明能够较准确的反演出PM2.5实时浓度,得到PM2.5的空间分布规律,为需要高精度PM2.5分布数据的研究提供基础数据。

Patent Agency Ranking