-
公开(公告)号:CN110909623A
公开(公告)日:2020-03-24
申请号:CN201911052349.9
申请日:2019-10-31
Applicant: 南京邮电大学
Abstract: 本发明提出了一种三维目标检测方法及三维目标检测器。所述三维目标检测方法主要包括以下步骤:对三维目标检测数据集的图像数据进行语义分割,得到语义预测;将语义预测投影到点云空间中,并筛选特定类别的点形成视锥;构建三维目标检测网络,并将视锥作为三维目标检测网络的输入;通过损失函数强化三维目标检测网络对目标的敏感程度;优化三维目标检测网络。本发明大大减少了三维检测的时间并且降低了计算需求,使得输入更加简单,具有很好的实时目标检测性能,在保持实时检测的同时也能获得很好的检测效果。
-
公开(公告)号:CN118644867A
公开(公告)日:2024-09-13
申请号:CN202410815593.0
申请日:2024-06-24
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于图卷积神经网络的假新闻检测方法,属于图卷积神经网络机器学习技术,包括如下步骤:S1、使用预训练模型提取待检测新闻集合的图像模态特征集合和文本模态特征集合;S2、将图像模态特征与文本模态特征作为初始无向图的节点分别构造图像模态和文本模态的初始无向图,初始无向图用初始邻接矩阵和节点特征表示;S3,将初始无向图输入到图结构学习网络中进行图结构优化,得到优化后的图结构;S4、将优化后的图结构输入到两层跨模态共享权重的图卷积神经网络中,最终得到跨模态的特征;S5、将得到的跨模态的特征输入到模态鉴别器中学习模态不变的特征;S6、将S5中得到的模态不变的特征输入到分类器中得到该条新闻为假新闻的可能性。
-
公开(公告)号:CN116911379A
公开(公告)日:2023-10-20
申请号:CN202310741144.1
申请日:2023-06-21
Applicant: 南京邮电大学
IPC: G06N3/098 , G06N3/0464 , G06F18/15
Abstract: 本发明涉及一种基于自步学习与邻接矩阵的标签噪声鲁棒联邦学习方法,基于客户端‑服务器模式的横向联邦学习框架,进行分布式训练,包括以下步骤:步骤S1,选取可信客户端;步骤S2,根据可信客户端计算所有客户端样本的近邻关系:根据步骤S1中获得的可信客户端进行联邦学习,得到全局联邦模型,使用所述全局联邦模型为所有客户端样本计算近邻关系;步骤S3,自步更新样本近邻关系以及标签评估与矫正;步骤S4,离群样本处理。本发明提供一种安全可靠的基于自步学习与邻接矩阵的标签噪声鲁棒联邦学习方法,能够有效地减少噪声数据对模型的干扰,并提高模型收敛速度。
-
公开(公告)号:CN112800292B
公开(公告)日:2022-10-11
申请号:CN202110053038.5
申请日:2021-01-15
Applicant: 南京邮电大学
IPC: G06F16/9032 , G06F16/901 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于模态特定和共享特征学习的跨模态检索方法,包括:步骤S1、获取跨模态检索数据集,划分为训练集和测试集;步骤S2、对文本和图像分别进行特征提取;步骤S3、提取模态特定特征和模态共享特征;步骤S4、通过哈希网络生成对应模态样本的哈希码;步骤S5、联合对抗自编码器网络的损失函数以及哈希网络的损失函数训练网络;步骤S6、利用步骤S5中训练完成的网络对测试集中的样本进行跨模态检索。本发明设计了一个哈希网络,将图像通道的编码特征和文本通道编码特征以及模态共享特征投影到汉明空间中,并且利用标签信息、模态特定和共享特征进行建模,使得输出的哈希码在模态间和模态内具有更好的语义区分性。
-
公开(公告)号:CN116959098A
公开(公告)日:2023-10-27
申请号:CN202310720600.4
申请日:2023-06-16
Applicant: 南京邮电大学
IPC: G06V40/20 , G06V40/10 , G06V10/56 , G06V10/774 , G06V10/82 , G06V10/80 , G06V10/764
Abstract: 本发明公开了一种基于双粒度三模态度量学习的行人重识别方法及系统包括:获取跨模态行人图像数据集,并划分为训练集和测试集;对训练集的彩色行人图片进行颜色空间转换生成灰度图像,并将训练集的三个模态的图像进行特征提取;对提取的特征进行处理得到细粒度特征和粗粒度特征,根据粗、细粒度特征构造三元组,并设计三元损失函数对粗、细粒度特征进行学习;设计多模态分类器和正样本优化器,并结合三元损失函数训练网络模型,待网络模型收敛后,对测试集的行人图片进行检索;本发明提供的方法可以增加同类不同模态特征的紧凑性,缩小模态间差异,提高行人图像的检索准确率。
-
公开(公告)号:CN110909623B
公开(公告)日:2022-10-04
申请号:CN201911052349.9
申请日:2019-10-31
Applicant: 南京邮电大学
IPC: G06V20/64 , G06V10/764 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 本发明提出了一种三维目标检测方法及三维目标检测器。所述三维目标检测方法主要包括以下步骤:对三维目标检测数据集的图像数据进行语义分割,得到语义预测;将语义预测投影到点云空间中,并筛选特定类别的点形成视锥;构建三维目标检测网络,并将视锥作为三维目标检测网络的输入;通过损失函数强化三维目标检测网络对目标的敏感程度;优化三维目标检测网络。本发明大大减少了三维检测的时间并且降低了计算需求,使得输入更加简单,具有很好的实时目标检测性能,在保持实时检测的同时也能获得很好的检测效果。
-
公开(公告)号:CN112800292A
公开(公告)日:2021-05-14
申请号:CN202110053038.5
申请日:2021-01-15
Applicant: 南京邮电大学
IPC: G06F16/9032 , G06F16/901 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于模态特定和共享特征学习的跨模态检索方法,包括:步骤S1、获取跨模态检索数据集,划分为训练集和测试集;步骤S2、对文本和图像分别进行特征提取;步骤S3、提取模态特定特征和模态共享特征;步骤S4、通过哈希网络生成对应模态样本的哈希码;步骤S5、联合对抗自编码器网络的损失函数以及哈希网络的损失函数训练网络;步骤S6、利用步骤S5中训练完成的网络对测试集中的样本进行跨模态检索。本发明设计了一个哈希网络,将图像通道的编码特征和文本通道编码特征以及模态共享特征投影到汉明空间中,并且利用标签信息、模态特定和共享特征进行建模,使得输出的哈希码在模态间和模态内具有更好的语义区分性。
-
-
-
-
-
-