-
公开(公告)号:CN110309978A
公开(公告)日:2019-10-08
申请号:CN201910615225.0
申请日:2019-07-09
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于二次动态调整的神经网络光伏功率预测模型及方法,预测模型基于资源分配神经网络,用历史数据离线训练资源分配网络学习规则,得到在线预测以及后台二次动态调节的初始神经网络预测模型;将初始预测模型投入实际光伏功率预测,以实时数据作为模型输入,记录预测结果偏差较大的样本;误差较大的预测结果再次出现时,将与缓冲区的数据进行匹配,若出现特征相似的输入数据,则增加当前类型的输入样本支持度;具有相似特征的输入样本满足出现支持度阈值时,启用二次动态调节,调整预测模型的结构以学习该类样本。本发明在解决神经网络预测模型单一依赖离线训练样本问题的同时,使预测模型具备在线学习能力,更适应光伏功率的特性。
-
公开(公告)号:CN110309978B
公开(公告)日:2022-07-22
申请号:CN201910615225.0
申请日:2019-07-09
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于二次动态调整的神经网络光伏功率预测模型及方法,预测模型基于资源分配神经网络,用历史数据离线训练资源分配网络学习规则,得到在线预测以及后台二次动态调节的初始神经网络预测模型;将初始预测模型投入实际光伏功率预测,以实时数据作为模型输入,记录预测结果偏差较大的样本;误差较大的预测结果再次出现时,将与缓冲区的数据进行匹配,若出现特征相似的输入数据,则增加当前类型的输入样本支持度;具有相似特征的输入样本满足出现支持度阈值时,启用二次动态调节,调整预测模型的结构以学习该类样本。本发明在解决神经网络预测模型单一依赖离线训练样本问题的同时,使预测模型具备在线学习能力,更适应光伏功率的特性。
-