基于步进驱动的位置随动控制系统及控制方法

    公开(公告)号:CN106933261A

    公开(公告)日:2017-07-07

    申请号:CN201710300009.8

    申请日:2017-05-02

    Abstract: 本发明公开了一种基于步进驱动的位置随动控制系统及控制方法,其控制系统,包括控制器、步进电机驱动器、步进电机、减速机和随动转台,控制器接收上位机位置给定,完成转台的位置控制,并将速度指令通过与步进电机驱动器之间的连接电缆传输给步进电机驱动器,完成步进电机的速度控制。所述的控制器通过上位机接口接收位置给定,在处理器中完成位置控制运算,通过脉冲输出信号、方向输出信号输出到步进电机驱动器,控制步进电机运行。所述的处理器以上位机位置给定与虚拟位置反馈组成闭环位置控制,并通过最大频率限制、频率变化率的控制实现位置随动系统的控制功能。

    小型双输入减速机构测试系统的测试方法

    公开(公告)号:CN106840665A

    公开(公告)日:2017-06-13

    申请号:CN201710220026.0

    申请日:2017-04-06

    CPC classification number: G01M13/025

    Abstract: 本发明是一种小型双输入减速机构测试系统的测试方法,将电机控制器二设置为速度模式,电流限制设定为期望的加载转矩对应的电流大小,速度设定值为0,在电机驱动器二使能后,此时由于速度设定值0,加载电机并不转动,且加载转矩也几乎为0,待电机控制器一控制电机一、电机二测试启动时,电机一、电机二带动双输入减速机转动,双输入减速机带动加载电机转动,在加载电机刚开始转动时,电机控制器二的速度设定值与速度反馈存在差值,电机控制器二速度校正的比例积分控制输出迅速增加而达到饱和状态,实际控制模式为电流控制,此时加载电机实际转矩由于电流控制速度很快,因此随着电机一、电机二转动而实现快速加载,模拟实际工况。

    基于步进驱动的指挥镜两维转台随动控制系统及控制方法

    公开(公告)号:CN106774459A

    公开(公告)日:2017-05-31

    申请号:CN201710219973.8

    申请日:2017-04-06

    CPC classification number: G05D3/12

    Abstract: 本发明是一种基于步进驱动的指挥镜两维转台随动控制系统,包括运动控制器,运动控制器接收上位机随动位置给定,分别产生方位、高低控制指令信号通过与方位步进电机驱动器、高低步进电机驱动器之间的连接电缆传输给方位步进电机驱动器、高低步进电机驱动器,完成方位步进电机、高低步进电机的位置控制;通过对频率变化量即步进电机速度变化量的控制,使指挥镜随动平台避免在未知输入情况下速度突变和加速度突变造成对指挥镜的冲击及步进电机驱动系统的失步问题,实现较为简便,同时基于该硬件架构非常容易实现更多步进电机的随动位置系统的控制。

    基于步进驱动的位置随动控制系统及控制方法

    公开(公告)号:CN106933261B

    公开(公告)日:2020-05-26

    申请号:CN201710300009.8

    申请日:2017-05-02

    Abstract: 本发明公开了一种基于步进驱动的位置随动控制系统及控制方法,其控制系统,包括控制器、步进电机驱动器、步进电机、减速机和随动转台,控制器接收上位机位置给定,完成转台的位置控制,并将速度指令通过与步进电机驱动器之间的连接电缆传输给步进电机驱动器,完成步进电机的速度控制。所述的控制器通过上位机接口接收位置给定,在处理器中完成位置控制运算,通过脉冲输出信号、方向输出信号输出到步进电机驱动器,控制步进电机运行。所述的处理器以上位机位置给定与虚拟位置反馈组成闭环位置控制,并通过最大频率限制、频率变化率的控制实现位置随动系统的控制功能。

    一种双电机同步控制系统及其控制方法

    公开(公告)号:CN103269187A

    公开(公告)日:2013-08-28

    申请号:CN201310216915.1

    申请日:2013-05-31

    Abstract: 本发明公开了一种双电机同步控制系统及其控制方法,属于电机同步控制技术领域。它包括上位机、第一电机驱动器、第二电机驱动器、第一电机、第二电机、第一负载、第二负载、第一位置传感器和第二位置传感器,上位机的输出端分别与第一电机驱动器、第二电机驱动器连接,第一电机驱动器、第一电机、第一负载、第一位置传感器依次连接,第二电机驱动器、第二电机、第二负载、第二位置传感器依次连接;它还包括位置反馈修正补偿模块,位置反馈修正补偿模块的输入端接第一位置传感器和第二位置传感器,输出端接上位机的输入端。它可以实现双电机同步控制的低成本、高精度及易调试。

    适用于采棉机器人的视觉识别系统

    公开(公告)号:CN105701812B

    公开(公告)日:2021-09-07

    申请号:CN201610018459.3

    申请日:2016-01-12

    Abstract: 本发明公开了一种适用于采棉机器人的视觉识别系统,其特征是,包括视觉系统设定、棉花图像的滤波,棉花图像的分割,棉花图像的目标检测和边缘提取以及特征提取和成熟度分类。图像滤波采用了基于边缘乘积互信息的Unit‑linking PCNN的图像分割方法;基于改进自适应遗传算法实现棉花定位,然后利用快速多尺度边缘算法实现图像分割;通过对棉花图像特征、纹理特征、几何形状特征研究,基于主成分分析法实现棉花成熟度分类。本发明是基于图像视觉的采棉机器人的研究,具有成本低、通用性强、使用方便的特点,具有良好的应用前景。

    一种基于交流驱动的数字化电消隙控制系统的控制方法

    公开(公告)号:CN104601054B

    公开(公告)日:2017-02-22

    申请号:CN201510015157.6

    申请日:2015-01-12

    Abstract: 本发明公开了一种基于交流驱动的数字化电消隙控制系统,包括速度控制器、第一交流电机驱动器、第二交流电机驱动器;速度控制器、第一交流电机驱动器、第二交流电机驱动器之间通过CAN总线连接;速度控制器包括微处理器、第一CAN物理接口和第二CAN物理接口,第一CAN物理接口和第二CAN物理接口均与微处理器连接,第一CAN物理接口外接上位控制设备,第二CAN物理接口与第一交流电机驱动器和第二交流电机驱动器连接。本发明同时也公开了上述系统的控制方法。本发明基于市场广泛应用的交流电机驱动器,公开了一种基于交流驱动的数字化电消隙控制系统设计,无需专门设计电机控制系统,因而缩短系统开发周期,调试方便,同时具有数字化控制和交流控制系统优点。

    一种基于交流驱动的数字化电消隙控制系统及控制方法

    公开(公告)号:CN104601054A

    公开(公告)日:2015-05-06

    申请号:CN201510015157.6

    申请日:2015-01-12

    Abstract: 本发明公开了一种基于交流驱动的数字化电消隙控制系统,包括速度控制器、第一交流电机驱动器、第二交流电机驱动器;速度控制器、第一交流电机驱动器、第二交流电机驱动器之间通过CAN总线连接;速度控制器包括微处理器、第一CAN物理接口和第二CAN物理接口,第一CAN物理接口和第二CAN物理接口均与微处理器连接,第一CAN物理接口外接上位控制设备,第二CAN物理接口与第一交流电机驱动器和第二交流电机驱动器连接。本发明同时也公开了上述系统的控制方法。本发明基于市场广泛应用的交流电机驱动器,公开了一种基于交流驱动的数字化电消隙控制系统设计,无需专门设计电机控制系统,因而缩短系统开发周期,调试方便,同时具有数字化控制和交流控制系统优点。

    基于步进驱动的指挥镜两维转台随动控制系统及控制方法

    公开(公告)号:CN106774459B

    公开(公告)日:2023-04-14

    申请号:CN201710219973.8

    申请日:2017-04-06

    Abstract: 本发明是一种基于步进驱动的指挥镜两维转台随动控制系统,包括运动控制器,运动控制器接收上位机随动位置给定,分别产生方位、高低控制指令信号通过与方位步进电机驱动器、高低步进电机驱动器之间的连接电缆传输给方位步进电机驱动器、高低步进电机驱动器,完成方位步进电机、高低步进电机的位置控制;通过对频率变化量即步进电机速度变化量的控制,使指挥镜随动平台避免在未知输入情况下速度突变和加速度突变造成对指挥镜的冲击及步进电机驱动系统的失步问题,实现较为简便,同时基于该硬件架构非常容易实现更多步进电机的随动位置系统的控制。

    小型双输入减速机构的测试方法

    公开(公告)号:CN106840665B

    公开(公告)日:2019-08-02

    申请号:CN201710220026.0

    申请日:2017-04-06

    Abstract: 本发明是一种小型双输入减速机构的测试方法,将电机控制器二设置为速度模式,电流限制设定为期望的加载转矩对应的电流大小,速度设定值为0,在电机驱动器二使能后,此时由于速度设定值0,加载电机并不转动,且加载转矩也几乎为0,待电机控制器一控制电机一、电机二测试启动时,电机一、电机二带动双输入减速机转动,双输入减速机带动加载电机转动,在加载电机刚开始转动时,电机控制器二的速度设定值与速度反馈存在差值,电机控制器二速度校正的比例积分控制输出迅速增加而达到饱和状态,实际控制模式为电流控制,此时加载电机实际转矩由于电流控制速度很快,因此随着电机一、电机二转动而实现快速加载,模拟实际工况。

Patent Agency Ranking