-
公开(公告)号:CN113012067B
公开(公告)日:2022-11-18
申请号:CN202110279385.X
申请日:2021-03-16
Applicant: 华南理工大学
Abstract: 本发明公开了一种基于Retinex理论和端到端深度网络的水下图像复原方法,包括:1)简化Jaffe‑McGlamery水下成像模型,以符合Retinex理论基本假设;2)依据简化的Jaffe‑McGlamery水下成像模型以及环境光图空间平滑的先验条件估计环境光图,分解粗略场景反射率图;3)设计端到端深度网络实现水下图像的精细化复原;4)将粗略场景反射率图输入到端到端深度网络中进行训练,得到最优的端到端深度网络,最后,将待测的粗略场景反射率图输入到最优的端到端深度网络,网络的输出即为复原的水下图像。本发明消除光在水下传播时衰减和散射对成像过程的影响,以改善图像的视觉效果,有效恢复水下图像视觉质量。
-
公开(公告)号:CN116596837A
公开(公告)日:2023-08-15
申请号:CN202310235751.0
申请日:2023-03-13
Applicant: 华南理工大学
IPC: G06T7/00 , G06T3/40 , G06V10/40 , G06V10/82 , G06V10/80 , G06V10/764 , G06V10/766 , G06N3/0464
Abstract: 本发明公开了一种基于Faster‑RCNN模型的元器件弱缺陷高精度检测方法,包括:1)元器件图像采集;2)对原始图像进行双线性插值,得到为原图两倍大小的超尺度图;3)对原图进行特征提取,得到原图特征;对超尺度图做特征提取,得到超尺度图特征;4)对超尺度图特征进行最大值下采样,与原图特征对齐;5)将超尺度图特征与原图特征进行拼接融合;6)将融合后的特征图输入检测头,进行缺陷的定位及分类。本发明基于Faster‑RCNN模型对电子元器件缺陷检测,加强了对弱缺陷的检测能力,缓解了现有技术对元器件弱缺陷检测精度不高的问题,提高了元器件缺陷的整体检测精度。
-
公开(公告)号:CN115984246A
公开(公告)日:2023-04-18
申请号:CN202310080768.3
申请日:2023-01-17
Applicant: 华南理工大学
Abstract: 本发明属于机器视觉技术领域,公开了一种基于机器视觉的缺陷快速检测方法及装置、设备、存储介质,方法包括将待检测图像划分成若干图像子块;计算每个图像子块的多个相位一致性值,并求每个图像子块的多个相位一致性值的平均值;将平均值较大的指定数量个图像子块作为缺陷子块。该检测方法通过计算图像的相位一致性来检测图像中的边缘,可以不受图像局部光线明暗变化的影响,并能包含图像中的角、线、纹理等信息,尤其在图像边缘对比度比较低时保留边缘信息,从而对图像的亮度、对比度不敏感,可以很好的克服光线明暗所带来的纹理结构影响,进而可以提高基于机器视觉的产品表面缺陷检测的精确度。
-
-
公开(公告)号:CN113012067A
公开(公告)日:2021-06-22
申请号:CN202110279385.X
申请日:2021-03-16
Applicant: 华南理工大学
Abstract: 本发明公开了一种基于Retinex理论和端到端深度网络的水下图像复原方法,包括:1)简化Jaffe‑McGlamery水下成像模型,以符合Retinex理论基本假设;2)依据简化的Jaffe‑McGlamery水下成像模型以及环境光图空间平滑的先验条件估计环境光图,分解粗略场景反射率图;3)设计端到端深度网络实现水下图像的精细化复原;4)将粗略场景反射率图输入到端到端深度网络中进行训练,得到最优的端到端深度网络,最后,将待测的粗略场景反射率图输入到最优的端到端深度网络,网络的输出即为复原的水下图像。本发明消除光在水下传播时衰减和散射对成像过程的影响,以改善图像的视觉效果,有效恢复水下图像视觉质量。
-
-
-
-