一种基于气体传感器的水果果实损伤的分析检测方法

    公开(公告)号:CN116879409A

    公开(公告)日:2023-10-13

    申请号:CN202310859061.2

    申请日:2023-07-13

    Abstract: 本发明公开了一种基于气体传感器的水果果实损伤的分析检测方法,包括:通过传感器阵列采集被检测水果果实的传感器响应信号,并对传感器响应信号进行滤波处理;对滤波处理后的传感器响应信号进行特征提取,构建特征矩阵;通过传感器滤波得到被检测水果果实及对应检测环境的特征值构建特征向量;采用特征选择算法对所述初始特征数据进行三阶段的特征选择,最终得到输入特征组合;将所述输入特征组合输入至改进粒子群优化的支持向量机模型,进行多任务的识别预测,运用损伤计算公式得到果实损伤数据。本发明能够提升果实损伤预测检测精度,实现有效的果实损伤定性定量输出,可以满足便携式检测设备的方法需求。

    一种基于改进时间序列的果园土壤电导率预测方法

    公开(公告)号:CN117852766A

    公开(公告)日:2024-04-09

    申请号:CN202410042828.7

    申请日:2024-01-11

    Abstract: 本发明公开了一种基于改进时间序列的果园土壤电导率预测方法,包括以下步骤:S1,获取基于原始时间序列的果园农情数据;S2,基于改进时间序列对原始时间序列的果园农情数据进行处理,获得改进时间序列数据;S3,将改进时间序列数据输入Transformer‑BiLSTM模型中进行果园土壤电导率预测,获得最佳预测结果。本发明通过使用改进时间序列的数据集,降低了数据集的冗余度;同时利用Transformer‑BiLSTM模型来处理时序数据,既具有处理长距离数据依赖性以及捕获全局序列信息的优势,又具有处理双向长短时记忆数据以及捕获局部上下文信息和时序特征的优势,保证了时序数据处理的效率,提高了果园土壤电导率预测结果的准确度。

Patent Agency Ranking